High-pressure Phase Behavior of 1-propanol / Carbon Dioxide Binary System

1-Propanol / CO2 이성분계의 고압 상거동

  • Han, Chang-Nam (Department of Advanced Chemical and Engineering Chonnam National University) ;
  • Kang, Choon-Hyoung (School of Applied Chemical Engineering, Chonnam National University)
  • 한창남 (전남대학교 신화학소재공학과) ;
  • 강춘형 (전남대학교 응용화학공학부)
  • Received : 2010.06.17
  • Accepted : 2010.07.09
  • Published : 2010.12.31

Abstract

High-pressure phase behavior for the binary mixture of 1-propanol with supercritical $CO_2$ has been measured by means of a high-pressure phase equilibrium apparatus equipped with a variable-volume view cell. The equilibrium loci of the pressure - composition and pressure - temperature were obtained for the binary mixture of 1-propanol + $CO_2$ system at 305.15 K, 313.15 K, 323.15 K and 333.15 K, and from 2 MPa to 11 MPa. The critical temperature of the mixture increased with the temperature. The pressure-composition line for the binary mixture of $CO_2$-1-propanol system showed a typical type-II phase behavior. The experimental P-x envelopes were correlated by using the Peng-Robinson equation of state in a satisfactory manner to obtain the parameters with $k_{ij}=0.116$ and ${\eta}_{ij}=-0.065$.

본 연구에서는 가변부피 투시셀이 장착된 고압 상평형 장치를 사용하여 초임계 용매인 이산화탄소와 1-propanol의 기액 상평형 거동을 관찰하였다. 이산화탄소와 1-propanol 이성분계에 대하여 온도 305.15 K, 313.15 K, 323.15 K, 333.15 K와 압력 2~11 MPa 범위까지의 실험 결과를 압력-조성(P-x)과 압력-온도(P-T)의 평형 곡선으로 나타내었다. 온도가 증가함에 따라서 혼합물 임계압력도 증가하였고 이산화탄소와 1-propanol계 혼합물의 P-T 곡선은 전형적인 type-II의 유형을 나타내었다. Peng-Robinson 상태방정식을 이용하여 실험 결과를 적합하여 결정한 최적 파라미터 값은 각각 $k_{ij}=0.116$${\eta}_{ij}=-0.065$이였으며 Peng-Robinson 상태방정식에 적용하여 계산된 예측치는 실험결과와 비교적 좋은 일치를 보였다.

Keywords

References

  1. Lee, Y.-W., "Design of Particles using Supercritical Fluids," HWAHAK KONGHAK, 41(6), 679(2003).
  2. Kim, J. D., Park, J.-Y., Lee, Y.-W. and Lim, J. S., "Phase Behavior of Poly(L-lactide) and Polycaprolactone in Binary Mixtures Including $CO_2$ at High Pressure," Korean Chem. Eng. Res. (HWAHAK KONGHAK), 42(5), 545(2004).
  3. Kang, D.-Y., Min, B.-J., Rho, S.-G. and Kang, C.-H., "Preparation of Dextran Microparticles by Using the SAS Process," Korean Chem. Eng. Res. (HWAHAK KONGHAK), 46(5), 958(2008).
  4. Subramaniam, B., Rajewski, R. A. and Snavely, K., "Pharmaceutical Processing with Supercritical Carbon Dioxide," J. Pharm. Sci., 86(8), 885(1997). https://doi.org/10.1021/js9700661
  5. Shin, E.-K., Oh, D.-J. and Lee, B.-C., "Phase Behavior of Simvastatin Drug in Mixtures of Dimethyl Ether and Supercritical Carbon Dioxide," Clean Technol., 13(4), 237(2007).
  6. Paulaitis, M. E., "Chemical Engineering at Supercritical Fluid Condition," Ann Arbor Science, Michigan(1983).
  7. Peng, D. Y. and Robinson, D. B., "A New Two-Constant Equation of State," Ind. Eng. Chem. Fundam., 15, 59(1976). https://doi.org/10.1021/i160057a011
  8. Poling, B. E., Prausnitz, J. M. and O'Connel, J. P., The Properties of Gases and Liquids, 5th ed., McGraw-Hill, New York(2001).
  9. Van Konynenburg, P. H. and Scott, R. L., "Critical Lines and Phase Equilibria in Binary van der Waals Mixtures," Philos. Trans. Royal. Soc. London Ser A, 298, 495(1980). https://doi.org/10.1098/rsta.1980.0266
  10. Ziegler, J. W., Dorsey, J. G., Chester, T. L. and Innis, D. P., "Estimation of Liquid-Vapor Critical Loci for $CO_2$-Solvent Mixtures Using a Peak-Shape Method," Anal. Chem, 67(2), 456(1995). https://doi.org/10.1021/ac00098a034
  11. Lucien, F. P. and Foster, N. R., "Solubilities of Solid Mixtures in Supercritical Carbon Dioxide: a Review," J. Supercritical Fluids, 17, 111(2000). https://doi.org/10.1016/S0896-8446(99)00048-0
  12. Lu, B. C. Y. and Zhang, D., "Solid-supercritical Fluid Phase Equilibria," Pure Appl. Chem., 61(6), 1065(1989). https://doi.org/10.1351/pac198961061065
  13. Cismondi, M. and Michelsen, M. L., "Global Phase Equilibrium Calculations: Critical lines, Critical End Points and Liquid-liquid-vapour Equilibrium in Binary Mixtures," J. Supercritical Fluids, 39, 287(2007). https://doi.org/10.1016/j.supflu.2006.03.011
  14. Yeo, S.-D., Park, S.-J., Kim, J.-W. and Kim, J.-C., "Critical Properties of Carbon Dioxide + Methanol, + Ethanol, + 1-Propanol, and + 1-Butanol," J. Chem. Eng. Data, 45, 932(2000). https://doi.org/10.1021/je000104p
  15. Lam, D. H., Jangkamolkulchai, A. and Luks, K. D., "Liquid-liquid-vapor Phase Equilibrium Behavior of Certain Binary Carbon Dioxide + n-Alkanol Mixtures," Fluid Phase Equilib, 60, 131(1990). https://doi.org/10.1016/0378-3812(90)85047-E
  16. McHugh, M. A. and Krukonis, V. J., Supercritical Fluid Extraction: Principles and Practice, 2nd ed., Butterworth-Heinemann, Boston(1994).
  17. Byun, H.-S., Kim, C.-H. and Kwak, C., "High Pressure Binary Phase Equilibria of Carbon Dioxide-Tetralin System," HWAHAK KONGHAK, 30, 387(1992).
  18. Prausnitz, J. M., Lichtenthaler, R. N. and De Azervedo, E. G., Molecular Thermodynamics of Fluid Phase Equilibria, 2nd ed., Prentice-Hall Inc, New Jersey(1987).
  19. Lee, J.-U. and Chung, G.-Y., "Study on the Mixture Parameters of the Mixing Rule in Simulating Behaviors of the Supercritical System with the Peng-Robinson Equation," J. Korean Ind. Eng. Chem., 6(5), 819(1995).
  20. Byun, H.-S. and Yoo, K.-P., "Phase Behavior Measurement on the Binary Mixture for Isopropyl Acrylate and Isopropyl Methacrylate in Supercritical $CO_2$," Fluid Phase Equilibria, 249, 55 (2006). https://doi.org/10.1016/j.fluid.2006.08.019
  21. Baker, J. A., "Determination of Activity Coefficients from Total Pressure Measurements," Aust. J. Chem., 6, 207(1953). https://doi.org/10.1071/CH9530207
  22. Aspen Plus User Guide, Version 12.1, Aspentech, 2003.