• Title/Summary/Keyword: 초음파팬텀

Search Result 65, Processing Time 0.029 seconds

Variability of Transrectal Shear Wave Elastography in a Phantom Model (팬텀연구에서 경직장 전단파탄성초음파의 가변성)

  • Jihyun Lee;Seong Kuk Yoon;Jin Han Cho;Hee Jin Kwon;Dong Won Kim;Jun Woo Lee
    • Journal of the Korean Society of Radiology
    • /
    • v.84 no.5
    • /
    • pp.1110-1122
    • /
    • 2023
  • Purpose This study aimed to assess the variability of transrectal shear wave elastography (SWE) using a designed phantom. Materials and Methods In a phantom, the SWE values were examined by two radiologists using agarose and emulsion silicone of different sizes (1, 2, and 3 cm) and shapes (round, cubic) at three depths (1, 2, and 3 cm), two region of interest (ROI) and locations (central, peripheral) using two ultrasound machines (A, B from different vendors). Variability was evaluated using the coefficient of variation (CV). Results The CVs decreased with increasing phantom size. Significant changes in SWE values included; agarose phantom at 3 cm depth (p < 0.001; machine A), 1 cm depth (p = 0.01; machine B), emulsion silicone at 2 cm depth (p = 0.047, p = 0.020; both machines). The CVs increased with increasing depth. Significant changes in SWE values included; 1 cm agarose (p = 0.037, p = 0.021; both machines) and 2 cm agarose phantom (p = 0.047; machine A). Significant differences in SWE values were observed between the shapes for emulsion silicone phantom (p = 0.032; machines A) and between ROI locations on machine B (p ≤ 0.001). The SWE values differed significantly between the two machines (p < 0.05). The intra-/inter-operator agreements were excellent (intraclass correlation coefficient > 0.9). Conclusion The phantom size, depth, and different machines affected the variability of transrectal SWE.

Development of Ultrasound Phantom for Volume Calibration (부피 측정을 위한 초음파 팬텀 개발)

  • Kim, Hye-Young;Lee, Ji-Hae;Lee, Kyung-Ja;Suh, Hyun-Suk;Lee, Re-Na
    • Progress in Medical Physics
    • /
    • v.19 no.4
    • /
    • pp.227-230
    • /
    • 2008
  • The purpose of this study was to design and construct an ultrasound phantom for volume calibration and evaluate the volume measurement accuracy of a 2 dimensional ultrasonic system. Ultrasound phantom was designed, constructed and tested. The phantom consisted of a background material and a target. The background was made by mixing agarose gel with water. A target, made with an elastic material, was filled with water to vary its volume and shape and inserted into background material. To evaluate accuracy of a 2 dimensional ultrasonic system (128XP, ACUSON), three different shapes of targets (a sphere, 2 ellipsoids and a triangular prism) were constructed. In case of ellipsoid shape, two targets, one with same size length and width (ellipsoid 1) and another with the length 2 times longer than width (ellipsoid 2) were examined. The target volumes of each shape were varied from 94cc to 450cc and measurement accuracy was examined. The volume difference between the real and measured target of the sphere shape ranged between 6.7 and 11%. For the ellipsoid targets, the differences ranged from 9.2 to 10.5% with ellipsoid 1 and 25.7% with ellipsoid 2. The volume difference of the triangular prism target ranged between 20.8 and 35%. An easy and simple method of constructing an ultrasound phantom was introduced and it was possible to check the volume measurement accuracy of an ultrasound system.

  • PDF

Evaluation of Image Quality using ATS-539 Phantom and SNR in the Ultrasonographic Equipment (ATS-539 다목적 팬텀과 SNR을 이용한 초음파 영상평가)

  • Kim, Min-Ju;Lee, Jin-Soo;Ko, Seong-Jin;Kang, Se-Sik;Kim, Jung-Hoon;Kim, Dong-Hyun;Kim, Changsoo
    • The Journal of the Korea Contents Association
    • /
    • v.13 no.8
    • /
    • pp.284-291
    • /
    • 2013
  • The importance of ultrasound examination in the field of medical imaging has been emphasized and the interest in sonographic image evaluation is growing. However image evaluations by the non-standardized criteria and methods, so establishment of legal provisions and objective evaluation criteria are needed. In this study, we used SNR to find out more quantitative way and supplement the limitations of the existing phantom image evaluation. The results of acquired 8 images using ATS-539 multipurpose phantom were compared in SNR of sensitivity and gray-scale dynamic range. In the result of the experiment, excellent equipment of existing phantom images are G1, S1 and G2 in regular sequence. In SNR of sensitivity, G1, S1 and G2 and in SNR of gray-scale dynamic range, S1 G1 and G2 in order. In the conclusion, all the experiment results did not show big difference and regular pattern neither. Therefore, the new evaluation measures should be used with the existing phantom image evaluation method for more objective and quantitative evaluation of the ultrasound imaging device.

A Study of the Development for Fatty Liver Quantification Diagnostic Technology from Ultrasound Images using a Simulated Fatty Liver Phantom (모사 지방간 팬텀을 활용한 초음파영상에서 지방간 정량화 진단 기술 개발을 위한 연구)

  • Yei-Ji Lim;Seung-Man Yu
    • Journal of the Korean Society of Radiology
    • /
    • v.18 no.2
    • /
    • pp.135-144
    • /
    • 2024
  • Ultrasonography examination has limitations in quantifying hepatic fat quantification. Therefore, this study aimed to experimentally demonstrate whether changes in signal attenuation during ultrasound imaging can be quantified using simulated hepatic phantoms to assess hepatic fat content. Additionally, we aimed to evaluate the potential of ultrasound imaging for diagnosing hepatic fatty liver by analyzing the relationship between hepatic fat content and signal intensity in ultrasound images. In this study, we developed a total of five stimulated hepatic phantoms by homogeneously mixing water and oil. We confirmed the fat content of the phantoms using magnetic resonance imaging (MRI) and ultrasound imaging, and measured signal intensity according to distance in ultrasound images to analyze the correlation and mean comparison between fat content and signal intensity. We observed that as the fat content increased, the ultrasound penetration intensity decreased, confirming the potential for quantifying hepatic fat content using ultrasound. Additionally, the analysis of the correlation between the measured fat content using MRI and the signal intensity measured in ultrasound images showed a high correlation. Statistical analysis in our study confirmed that as the fat content increased, the slope representing signal during ultrasound imaging (US-GRE) decreased. In this study, it was statistically confirmed that the US-GRE value of ultrasound images gradually decreases as the fat content increases, and it is believed that US-GRE can serve as a biomarker expressing fatty liver content.

The Effect of Acoustic Velocity of Ultrasonographic Equipment Using an N-365 Multipurpose Phantom (N-365 다목적팬텀에서 초음파진단장치의 음속변화 효과)

  • Kim, Yon-Min;Shim, Jae-Goo;Kim, Sang-Hyun
    • Journal of the Korean Society of Radiology
    • /
    • v.11 no.4
    • /
    • pp.221-225
    • /
    • 2017
  • To evaluate the performance of ultrasound imaging system, we investigated the change of spatial resolution according to changing sonic velocity change parameter provided by ultrasound equipment. Ultrasound phantom images were obtained using a 3.0 ~ 5.0 MHz convex transducer in an ultrasound diagnostic device used at a medical institution located at Iksan. N-365 multi-purpose ultrasound phantom was used to measure longitudinal distance measurement accuracy and longitudinal and transverse resolution. In the same manner, the sonic velocity of the ultrasound equipment was changed from 1580 m/sec to 1400 m/sec in six steps, and the full width at half maximum(FWHM) was measured using the image J program to determine whether the measured values were different. As a result, lateral resolution was measured from 1.91 mm to 5.3 mm according to the speed change, and the smallest FWHM was 1.91 mm at 1420 m/sec. The axial resolution was measured from 1.03 mm to 1.14 mm according to the speed change, and the smallest FWHM was 1.03 mm at 1400 m/sec. The slower the sound velocity of the ultrasound equipment, the shorter the length of longitudinal measurement.

Development of Tissue mimicking ultrasound phantom materials (Tissue mimicking 초음파 팬텀물질의 개발에 관한 연구)

  • Ma, Sang-Chull;Kong, Young-Kun;Park, Ki-Jung;Lee, Suk
    • Journal of radiological science and technology
    • /
    • v.26 no.1
    • /
    • pp.51-62
    • /
    • 2003
  • We carried out studies on develop of the ultrasound tissue mimicking materials(TMM) by synthesis of polymer urethane(C, CCR, $TiO_2$, tungsten, graphite, silver type). The major finding were as follows; (1) C type TMM was shown good homogeneity, penetration, gray scale like as liver tissue and propagated speed 1,540 m/s, attenuation $0.5{\sim}0.7\;dB/cm/MHz$. (2) $TiO_2$ type TMM was shown heterogeneous dot echo pattern. (3) Silver type TMM was appear good homogeneous echo pattern like as echo texture of thyroid gland. Therefor, C type TMM will be useful for ultrasound Q/A phantom materials and previous phantom materials.

  • PDF

Observation with Calcifications of Breast Tissue Phantoms Using Acoustic Resonance (공명현상을 이용한 유방조직 팬텀의 석회화 관찰)

  • Ha, Myeung-Jin;Kim, Jeong-Koo
    • Journal of radiological science and technology
    • /
    • v.31 no.1
    • /
    • pp.61-69
    • /
    • 2008
  • Diagnosis of breast ultrasound is better than mammography in the early detection of breast cancer, but, it is difficult to detect microcalcification. We studied on detection for calcification of breast tissue using acoustic resonance and power doppler with 7.5 MHz linear probe in breast ultrasound. We first constructed breast tissue phantom made of gelatin and saw breast, and then observed calcification by the change of external vibration. Calcification injected breast tissue phantom visualized the difference for brightness and region of color in ROI regions of power doppler. Acoustic resonance almost never visualized in low frequency regions, plateau constituted in about 300-400 Hz and colors vanished according to the increase of frequency.

  • PDF

Reproducibility Evaluation of Shear Wave Elastography According to the Depth of the Simulated Lesion in Breast Ultrasonography (유방초음파 검사에서 모조 병소의 깊이에 따른 전단파 탄성초음파의 재현성 평가)

  • Jin-Hee Kim;In-Soo Kim;Cheol-Min Jeon;Jae-Bok Han
    • Journal of the Korean Society of Radiology
    • /
    • v.17 no.6
    • /
    • pp.919-927
    • /
    • 2023
  • Elastography utilizes the fact that the tissue of a malignant tumor is harder than that of a benign tumor and increases the specificity of diagnosis according to the elastic modulus of the tumor, helping to reduce unnecessary biopsies. However, the reliability of elastography can be influenced by the equipment used and the examiner's skills. In this study, the researchers analyzed the reproducibility of elastography by evaluating phantom images when measuring the elasticity values repeatedly. Phantoms were created using silicone and gelatin with different levels of stiffness, and they were inserted at varying depths from the surface. The elasticity values were measured using shear wave elastography. The study aimed to determine whether the reproducibility of elasticity values remains consistent depending on the stiffness and depth of the lesions. The experimental results showed that there was no statistically significant correlation between the elasticity values obtained through shear wave elastography and the depth or stiffness of the lesions. However, in the lesions with the lowest stiffness, the elasticity values were statistically significant (p<0.001) and showed a high correlation with the depth of the lesions. Although there were variations in the measured elasticity values based on the differences in lesion stiffness and depth, these differences did not significantly impact the diagnosis. Therefore, shear wave elastography remains a reliable diagnostic method, and it is suggested that it can be helpful in the diagnosis of breast lesions.

Development of Respiration Gating RT Technique using Moving Phantom and Ultrasound Sensor: a feasibility study (동 팬텀과 초음파 센서를 이용한 호흡운동 조절 방사선치료 기술 개발)

  • Lee, Suk;Lee, Sang-Hoon;Shin, Dong-Ho;Yang, Dae-Sik;Choi, Myung-Sun;Kim, Chul-Yong
    • Proceedings of the Korean Society of Medical Physics Conference
    • /
    • 2004.11a
    • /
    • pp.122-125
    • /
    • 2004
  • In radiotherapy of tumors in liver, enough planning target volume (PTV) margins are necessary to compensate breathing-related movement of tumor volumes. To overcome the problems, this study aims to obtain patients' body movements by using a moving phantom and an ultrasonic sensor, and to develop respiration gating techniques that can adjust patients' beds by using reversed values of the data obtained. The phantom made to measure patients' body movements is composed of a microprocessor (BS II, 20 MHz, 8K Byte), a sensor (Ultra-Sonic, range 3 cm ${\sim}$3 m), host computer (RS232C) and stepping motor (torque 2.3Kg) etc., and the program to control and operate it was developed. The program allows the phantom to move within the maximum range of 2 cm, its movements and corrections to take place in order, and x, y and z to move successively. After the moving phantom was adjusted by entering random movement data(three dimensional data form with distance of 2cm), and the phantom movements were acquired using the ultra sonic sensor, the two data were compared and analyzed. And then, after the movements by respiration were acquired by using guinea pigs, the real-time respiration gating techniques were drawn by operating the phantom with the reversed values of the data. The result of analyzing the acquisition-correction delay time for the three types of data values and about each value separately shows that the data values coincided with one another within 1% and that the acquisition-correction delay time was obtained real-time (2.34 ${\times}$ 10$^{-4}$sec). This study successfully confirms the clinic application possibility of respiration gating techniques by using a moving phantom and an ultra sonic sensor. With ongoing development of additional analysis system, which can be used in real-time set-up reproducibility analysis, it may be beneficially used in radiotherapy of moving tumors.

  • PDF

Development of Respiration Gating RT Technique using Moving Phantom and Ultrasound Sensor: a feasibility study (동 팬텀과 초음파 센서를 이용한 호흡운동 조절 방사선치료 기술 개발)

  • Lee Suk;Lee Sang Hoon;Shin Dongho;Yang Dae Sik;Choi Myung Sun;Kim Chul Yong
    • Radiation Oncology Journal
    • /
    • v.22 no.4
    • /
    • pp.316-324
    • /
    • 2004
  • Purpose : In radiotherapy of tumors in liver, enough planning target volume (PTV) margins are necessary to compensate breathing-related movement of tumor volumes. To overcome the problems, this study aims to obtain patients' body movements by using a moving phantom and an ultrasonic sensor, and to develop respiration sating techniques that can adjust patients' beds by using reversed values of the data obtained. Materials and Methods : The phantom made to measure patients' body movements is composed of a microprocessor (BS II, 20 MHz, 8K Byte), a sensor (Ultra-Sonic, range $3\~3$ m), host computer (RS232C) and stepping motor (torque 2.3 Kg) etc., and the program to control and operate it was developed. The program allows the phantom to move within the maximum range of 2 cm, its movements and corrections to take place In order, and x, y and z to move successively. After the moving phantom was adjusted by entering random movement data (three dimensional data form with distance of 2 cm), and the phantom movements were acquired using the ultra sonic sensor, the two data were compared and analyzed. And then, after the movements by respiration were acquired by using guinea pigs, the real-time respiration gating techniques were drawn by operating the phantom with the reversed values of the data. Results : The result of analyzing the acquisition-correction delay time the three types of data values and about each value separately shows that the data values coincided with one another within $1\%$ and that the acquisition-correction delay time was obtained real-time $(2.34{\times}10^{-4}sec)$. Conclusion : This study successfully confirms the clinic application possibility of respiration gating techniques by using a moving phantom and an ultrasonic sensor. With ongoing development of additional analysis system, which can be used in real-time set-up reproducibility analysis, it may be beneficially used in radiotherapy of moving tumors.