• Title/Summary/Keyword: 초음파신호

Search Result 686, Processing Time 0.026 seconds

Study on the Debonding Detection Techniques of Liner/Propellant Interface of Rocket Motor (추진기관의 라이너/추진제 미접착 검출 기법 연구)

  • Kim, Dong-Ryun;Ryoo, Baek-Neung
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.55-59
    • /
    • 2007
  • It is known that the adhesive interface testing of the rocket motor which using the ultrasonic wave iS superior to the other testing methods about the economically detectable abiliη of the defects. But, the signal analysis of the ultrasonic wave takes too much time and effort that the time interval of the transmitted pulse and the received pulse is too short to be separated the reflected signals because the structure of the rocket motor is multi-layers. The ultrasonic testing of rocket motor have been only applied with automatic system about extremely limited area like the debond in adhesive interface between the motor case and insulator. In this study the new technique to detect the debond between the liner and the propellant using the property of the resonance and Lamb waves was described as comparing the existence ultrasonic testing.

  • PDF

Image enhancement in ultrasound passive cavitation imaging using centroid and flatness of received channel data (수신 채널 신호의 무게중심과 평탄도를 이용한 초음파 수동 공동 영상의 화질 개선)

  • Jeong, Mok Kun;Kwon, Sung Jae;Choi, Min Joo
    • The Journal of the Acoustical Society of Korea
    • /
    • v.38 no.4
    • /
    • pp.450-458
    • /
    • 2019
  • Passive cavitation imaging method is used to observe the ultrasonic waves generated when a group of bubbles collapses. A problem with passive cavitation imaging is a low resolution and large side lobe levels. Since ultrasound signals generated by passive cavitation take the form of a pulse, the amplitude distribution of signals received across the receive channels varies depending on the direction of incidence. Both the centroid and flatness were calculated to determine weights at imaging points in order to discriminate between the main and side lobe signals from the signal amplitude distribution of the received channel data and to reduce the side lobe levels. The centroid quantifies how the channel data are distributed across the receive channel, and the flatness measures the variance of the channel data. We applied the centroid weight and the flatness to the passive cavitation image constructed using the delay-and-sum focusing and minimum variance beamforming methods to improve the image quality. Using computer simulation and experiment, we show that the application of weighting in delay-and-sum and minimum variance beamforming reduces side lobe levels.

Photoacoustic Nonlinearity to Absorption Coefficients in Photoacoustic Imaging with Focused Ultrasound Transducers (초점 초음파 측정기로 측정한 광음향 신호의 광 흡수계수에 대한 비선형성)

  • Kang, Dongyel
    • Korean Journal of Optics and Photonics
    • /
    • v.28 no.4
    • /
    • pp.158-165
    • /
    • 2017
  • The physical shape of an ultrasound transducer has not been considered in previous studies of the photoacoustic saturation effect, where a photoacoustic signal's magnitude linearly increases as an absorption coefficient increases and it is finally saturated. In this paper, the effect of a spherically focused ultrasound transducer on photoacoustic nonlinearity is investigated. The focused ultrasound transducer's spatial filtering effect on photoacoustic signals is analytically derived considering the combined concept of a virtual point detector and Green function approach. The ultrasound transducer's temporal response (i.e., transfer function) effect on photoacoustic signals is considered by integrating photoacoustic signal values within the absorption area covered by a spatial resolution of the ultrasound transducer. Results from the analytically derived expression show that the magnitude of photoacoustic signals measured by a spherical focused ultrasound transducer shows a maximum at a specific absorption coefficient, and decreases after that maximum point as an absorption coefficient is increased. The origin of this photoacoustic nonlinearity is physically understood by comparing the ultrasound transducer's transfer functions and photoacoustic resonance spectra. In addition, this physical interpretation implies that the photoacoustic nonlinearity is strongly dependent on the irradiance distribution inside an absorption medium.

Enhancement of Ultrasonic C-scan Images for Inspection of Multi-layered Composite Panels (다층 후판 복합재 패널의 결함 검출을 위한 C-Scan 이미지 보정기법)

  • Cho Hyun;Song Sung-Jin
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2006.05a
    • /
    • pp.264-267
    • /
    • 2006
  • One of the serious problems that make the flaw identification in a multi-layered thick composite panel more difficult is the interferenceeffect of the upper layer. To take care of such a problem, here we propose an image enhancement approach that can get rid of such an interference effect to ultrasonic C-scan images by a normalization of the acquired signals by a reference signals, and demonstrate its performance in the experiments. Specifically, three specimens with artificial flaws are prepared and ultrasonic C-scan images are acquired experimentally to eliminate the undesired interference effect. Cleat successes are observed in the present study demonstrating the high potential of the proposed algorithm as a practical image enhancement tool in many practical situations.

  • PDF

Determination of Phase Velocity Dispersion Curve and Group Velocity of lamb Waves Using Backward Radiation (후방복사를 이용한 램파의 위상속도 분산과 군속도의 측정)

  • 송성진;권성덕;정용무;김영환
    • The Journal of the Acoustical Society of Korea
    • /
    • v.22 no.1
    • /
    • pp.61-68
    • /
    • 2003
  • The guided wave has been widely employed to characterize thin plates and layered media. The dispersion curves of phase and group velocities are essential for the quantitative application of guided waves. In the present work, a fully automated system for the measurement of backward radiation of LLW has been developed. The specimen moves in two dimensional plane as well as in angular rotation. The signals of backward radiation of LLW were measured from an elastic plate in which specific modes of Lamb wave were strongly generated. Phase velocity of the corresponding modes was determined from the incident angle. The generated Lamb waves propagated forward and backward with the leakage of energy into water. Backward radiated LLW was detected by the same transducer and its frequency components were analyzed to extract the related information to the dispersion curves. The dispersion curves of phase velocity were measured by varying the incident angle. Moving the specimen in the linear direction of LLW propagation, group velocity was determined by measuring the transit time shift in the ultrasonic waveform.

Feature Analysis of Ultrasonic Signals for Diagnosis of Welding Faults in Tubular Steel Tower (관형 철탑 용접 결함 진단을 위한 초음파 신호의 특징 분석)

  • Min, Tae-Hong;Yu, Hyeon-Tak;Kim, Hyeong-Jin;Choi, Byeong-Keun;Kim, Hyun-Sik;Lee, Gi-Seung;Kang, Seog-Geun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.25 no.4
    • /
    • pp.515-522
    • /
    • 2021
  • In this paper, we present and analyze a method of applying a machine learning to ultrasonic test signals for constant monitoring of the welding faults in a tubular steel tower. For the machine learning, feature selection based on genetic algorithm and fault signal classification using a support vector machine have been used. In the feature selection, the peak value, histogram lower bound, and normal negative log-likelihood from 30 features are selected. Those features clearly indicate the difference of signals according to the depth of faults. In addition, as a result of applying the selected features to the support vector machine, it has been possible to perfectly distinguish between the regions with and without faults. Hence, it is expected that the results of this study will be useful in the development of an early detection system for fault growth based on ultrasonic signals and in the energy transmission related industries in the future.

Development of a Laser-Generated Ultrasonic Inspection System by Using Adaptive Error Correction and Dynamic Stabilizer (적응적 에러 보정과 다이나믹 안정기를 이용한 레이저 유도 초음파 검사 시스템 개발)

  • Park, Seung-Kyu;Baik, Sung-Hoon;Park, Moon-Cheol;Lim, Chang-Hwan;Ra, Sung-Woong
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.25 no.5
    • /
    • pp.391-399
    • /
    • 2005
  • Laser-generated ultrasonic inspection system is a non-contact scanning inspection device with high spatial resolution and wide bandwidth. The amplitude of laser-generated ultrasound is varied according to the energy of pulse laser and the surface conditions of an object where the CW measuring laser beam is pointing. In this paper, we correct the generating errors by measuring the energy of pulse laser beam and correct the measuring errors by extracting the gain information of laser interferometer at each time. h dynamic stabilizer is developed to stably scan on the surface of an object for an laser-generated ultrasonic inspection system. The developed system generates ultrasound after adaptively finding the maximum gain time of an laser interferometer and processes the signal in real time after digitization with high speed. In this paper, we describe hardware configuration and control algorithm to build a stable laser-generated ultrasonic inspection system. Also, we confirmed through experiments that the proposed correction method for the generating errors and measuring errors is effective to improve the performance of a system.

Feasibility of Ultrasonic Inspection for Nuclear Grade Graphite (원자력급 흑연의 산화 정도에 따른 초음파특성 변화 및 초음파탐상의 타당성 연구)

  • Park, Jae-Seok;Yoon, Byung-Sik;Jang, Chang-Heui;Lee, Jong-Po
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.28 no.5
    • /
    • pp.436-442
    • /
    • 2008
  • Graphite material has been recognized as a very competitive candidate for reflector, moderator, and structural material for very high temperature reactor (VHTR). Since VHTR is operated up to $900-950^{\circ}C$, small amount of impurity may accelerate the oxidation and degradation of carbon graphite, which results in increased porosity and lowered fracture toughness. In this study, ultrasonic wave propagation properties were investigated for both as-received and degradated material, and the feasibility of ultrasonic testing (UT) was estimated based on the result of ultrasonic property measurements. The ultrasonic properties of carbon graphite were half, more than 5 times, and 1/3 for velocity, attenuation, and signal-to-noise (S/N) ratio respectively. Degradation reduces the ultrasonic velocity slightly by 100 m/s, however the attenuation is about 2 times of as-receive state. The results of probability of detection (POD) estimation based on S/N ratio for side-drilled-hole (SDHs) of which depths were less than 100 mm were merely affected by oxidation and degradation. This result suggests that UT would be reliable method for nondestructive testing of carbon graphite material of which thickness is not over 100 mm. In accordance with the result produced by commercial automated ultrasonic testing (AUT) system, human error of ultrasonic testing is barely expected for the material of which thickness is not over 80 mm.

초음파 진동절삭의 특성에 관한 연구

  • 이규배;이계철;임영호
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1993.04b
    • /
    • pp.151-154
    • /
    • 1993
  • 지동 및 음향분야의 발달과 더불어 가청주파수 이상의 초음파에대한 연구가 여러분야에 걸쳐 다양하게 많은 학 자들에 의해진전되어 왔다. 이중에서 실용적인 초음파 장치가 처음으로 등장한 것은 1921년경 프랑스의 랑지방 (P. Langevin)에 의해 만들어진 초음파측심기라고 전해지고 있다. 당시 사용된 진동자는 두 장의 금속원판 사이에 수정을 샌드위치 형태로 만든것으로써 랑지방형 진동자라고 한다. 최근 각종기계의 경량화, 고도화, 고성능화가 요구 되면서 고인성, 고내열성, 고경도 등의 특성을 갖는 재료를 가공함에 있어서 저동력 및 고정밀도가 요구되고 있다. 본 연구에서는 선삭가공에서 초음파발생기에서 보낸 초음파신호를 초음파 진동혼의 설계에 의한 진폭을 증가시켜 사각형 단면을 갖는 양단자유지지 굽힘진동 공구홀더의 공진조건을 초음파 진동절삭 가공시스템에 적용시키는데 목표를 두며 또한 초음파 진동절삭을 적용시켰을 때의 절삭 특성을 규명하기 위하여 선정된 절삭조건으로 선삭할 때 발생하는 절삭분 력 및 표면거칠기를 측정하고 분석하여 그 결과로부터 절삭특성을 해석코자 본 연구를 수행하였다.

Analysis of Ultrasonic Resonance Signal in Multi-Layered Structure (다중접착구조물의 초음파 공진 신호 분석)

  • Kim, Dong-Ryun;Kim, Jae-Hoon
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.32 no.4
    • /
    • pp.401-409
    • /
    • 2012
  • Ultrasonic testing are far superior to other nondestructive tests for detecting the disbond interface which occurred in adhesive interface. However, a solid rocket motor consisting of a steel case, rubber insulation, liner, and propellant poses many difficulties for analyzing ultrasonic waves because of the superposition of reflected waves and large differences in acoustic impedance of various materials. Therefore, ultrasonic tests for detecting the disbond interface in solid rocket motor have been applied in very limited areas between the steel case and rubber insulation using an automatic C-scan system. The existing ultrasonic test cannot detect the disbond interface between the liner and propellant of a solid rocket motor because most of the ultrasonic waves are absorbed in the rubber material which has low acoustic impedance. This problem could be overcome by analyzing the resonance frequency from the frequency spectrum using the ultrasonic resonance method. In this paper, a new technique to detect the disbond interface between the liner and propellant using ultrasonic resonance characteristics is discussed in detail.