• Title/Summary/Keyword: 초소형 장치

Search Result 142, Processing Time 0.031 seconds

A Behavior Analysis in the Circular Hybrid Subminiture Energy Harvesting Device (순환형 하이브리드 초소형 에너지 수확장치에서의 거동 해석)

  • Bae, Young-Chul
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.8 no.11
    • /
    • pp.1691-1696
    • /
    • 2013
  • In this paper, an analysis of behavior is performed in the circular hybrid energy harvesting device. This analysis of behavior is to confirm with or without an existence of nonlinear system because its system is required to produce the more energy. To do this, first of all the phase portrait is reconstructed through Taken's embedding method, and then Poincare map is organized by using phase portrait and finally Lyapunov exponent is analyzed.

MEMS Power Device (초소형 동력 장치)

  • Kwon, Se-Jin
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.12 no.1
    • /
    • pp.64-70
    • /
    • 2008
  • Thanks to the breakthroughs in micro fabrication technology, numerous concepts of micro aerospace systems including micro aerial vehicle, nano satellite and micro robot have been proposed. In order to activate these mobile micro systems, high density power in a small scale power source is required. However, we still do not have micro power source that has energy density that can support these systems. In the present article, status of micro power sources are described and alternatives that have been derived from the past experience are proposed.

Study on the characteristics of miniaturized free electron laser module (초소형 자유전자 레이저 모듈에 대한 특성 연구)

  • Kim, Young-Chul;Ahn, Seong-Joon;Kim, Ho-Seob;Kim, Dae-Wook;Ahn, Seung-Joon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.9 no.6
    • /
    • pp.1607-1613
    • /
    • 2008
  • We investigated the miniaturized free electron laser(FEL) module based on microcolumn. The miniaturized FEL is composed of two parts: electron generation part and radiation emission part. The radiation emission part, called wiggler, consists of a grid plate. While the electrons are passing through the wiggler, electron trajectory shows sinusoidal curve caused by the periodically applied voltage on the grid, and then it give rise to radiation emission. We analyzed the wiggler parameters, grid width, depth, period, applied voltage and the pair wiggler space using 2-D simulation tool.

Attitude Estimation Method through Attitude Comparison for Micro Aerial Vehicle (자세 비교를 통한 초소형 비행체의 자세 추정 기법)

  • 임종남;박찬국
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.34 no.8
    • /
    • pp.63-70
    • /
    • 2006
  • Due to the small size and weight of micro aerial vehicle (MAV), only miniaturized MEMS type sensors are applicable for MAV autonomous flight system. In this paper, we propose a accelerometer and gyro mixing algorithm to improve an attitude performance of MEMS type sensors. The performance of the proposed mixing algorithm is compared with the performance of fuzzy-based mixing algorithm through simulation. The simulation results show that the attitude compensation method through the attitude compensation has better performance than the fuzzy-based mixing method for MAV attitude estimation.

Kinematic Optimization and Experiment on Power Train for Flapping Wing Micro Air Vehicle (날갯짓 초소형 비행체의 끈을 이용한 동력 전달 장치에 대한 기구학적 최적화 및 실험)

  • Gong, Du-Hyun;Shin, Sang-Joon;Kim, Sang-Yong
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.30 no.4
    • /
    • pp.289-296
    • /
    • 2017
  • In this paper, geometrical optimization for newly designed flapping mechanism for insect-like micro air vehicle is presented. The mechanism uses strings to convert rotation of motor to reciprocating wing motion to reduce the total weight and inertial force. The governing algorithm of movement of the mechanism is established considering the characteristic of string that only tensile force can be acted by string, to optimize the kinematics. Modified pattern search method which is complemented to avoid converging into local optimum is adopted to the geometrical optimization of the mechanism. Then, prototype of the optimized geometry is produced and experimented to check the feasibility of the mechanism and the optimization method. The results from optimization and experiment shows good agreement in flapping amplitude and other wing kinematics. Further research will be conducted on dynamic analysis of the mechanism and detailed specification of the prototype.

A Study on Shock Attenuation according to the Flyer Characteristics of a Subminiaturized EFI detonator (초소형 EFI 착화기의 비행편 특성에 따른 충격파 감쇠 연구)

  • Yu, Hyeonju;Kim, Bohoon;Jang, Seung-gyo;Kim, Kyu-Hyoung;Yoh, Jack Jaick
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2017.05a
    • /
    • pp.426-432
    • /
    • 2017
  • An experimental and numerical study on shock attenuation in a solid by a subminiature flyer impact was conducted to determine the performance of a subminiature exploding foil initiator such as, flyer velocity and impulse loading. The obtained attenuation pattern shows the possibility to determine the critical flyer velocity for initiating the miniaturized pyrotechnic unit by figuring out shock intensity and duration according to flight characteristics.

  • PDF

Efficient Algorithms for Finite Field Operations on Memory-Constrained Devices (메모리가 제한된 장치를 위한 효율적인 유한체 연산 알고리즘)

  • Han, Tae-Youn;Lee, Mun-Kyu
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.15 no.4
    • /
    • pp.270-274
    • /
    • 2009
  • In this paper, we propose an efficient computation method over GF($2^m$) for memory-constrained devices. While previous methods concentrated only on fast multiplication, we propose to reduce the amount of required memory by cleverly changing the order of suboperations. According to our experiments, the new method reduces the memory consumption by about 20% compared to the previous methods, and it achieves a comparable speed with them.

Design of Intelligent Controller and Driving Circuit for Micro DC Motor Using PIC16C74 (PIC16C74를 이용한 초소형 DC 모터용 구동회로 및 지능형 제어기 설계)

  • Kim, D.W.;Woo, J.I.;Roh, T.K.;Park, G.H.;Hwang, G.H.;Lee, M.J.
    • Proceedings of the KIEE Conference
    • /
    • 2003.07d
    • /
    • pp.2149-2151
    • /
    • 2003
  • 본 논문에서는 마이컴(PIC16C74)과 Tabu 탐색법 및 지능기법(퍼지 및 신경회로망)을 이용하여 고정밀 제어 및 강인한 제어 성능을 가지는 초소형 DC 모터용 지능형 제어기를 개발하였다. 이를 위해 마이컴(PIC16C74)를 이용한 지능형 제어 알고리즘을 개발하고, 초소형 DC 모터용 드라이브 회로 설계 및 제작하였다. 개발한 초소형 DC 모터 지능형 제어기는 디지털 자동 용접캐리지에 적용할 예정이며, 다른 응용 분야로써는 자동배수장치, 반도체 분야, 산업용 로봇 분야 및 조립자동화 시스템 분야 등에 사용되는 구동모터에 적용함으로서 정밀도와 외부의 잡음에 대한 영향을 경감시켜 안정성과 효율향상 및 에너지절약이 가능할 것이다.

  • PDF