• Title/Summary/Keyword: 초소형 성형

Search Result 30, Processing Time 0.026 seconds

MEMS 기술과 정밀기계산업

  • 나경환;박훈재;오수익;이응숙;조남선
    • The Magazine of the IEIE
    • /
    • v.28 no.3
    • /
    • pp.30-42
    • /
    • 2001
  • 초소형의 전자 부품, 의료기기 및 광부품 등의 핵심부품들에 관한 산업계와 소비자의 욕구에 발맞추어 과학 기술의 진보가 요구되고 있다. 전통적인 금속 가공 방법과 MEMS와 같은 미세 부품 성형 방법의 중간적인 형태의 Milli-Structure 생산 기술은 근간의 추이에 발맞추어 차세대 국가경쟁력 강화를 위한 핵심기술로 주목받고 있다. 본 논문에서는 미세 부품 성형에 관련하여 국외 개발 동향을 검토하고 국내의 연구 상황을 본 연구팀의 연구를 위주로 하여 미세 소성 가공과 미세 기계 가공으로 분류하여 검토해 보기로 한다.

  • PDF

구형 압력용기의 초소성 성형 공정에서 두께변화 예측에 관한 이론해석

  • Yoon, Jong-Hoon;Lee, Ho-Sung;Jang, Young-Soon;Yi, Yeong-Moo
    • Aerospace Engineering and Technology
    • /
    • v.2 no.2
    • /
    • pp.133-141
    • /
    • 2003
  • When superplastic forming process is employed in manufacturing spherical pressure vessel, the thickness and spherical profile are not constant and varies during the forming process. In the current study, theoretical analysis for the prediction of thickness change was carried out under the consideration of membrane theory which has been employed in Kuglov et. al.'s study. Then the thickness of initial blank to obtain the required thickness at the final forming step, the time vs. pressure profile which yields uniform deformation in blank, and the thickness distribution according to the position at each forming step have been determined. The employed model and the developed analytical code were verified throughout comparing the theoretical predictions at each forming stage with the experimental results shown in literature.

  • PDF

Design of Cold Forging Process of Micro Screw for Mobile Devices (모바일 기기용 초소형 나사의 냉간 단조 공정 설계)

  • Choi, Du-Soon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.6
    • /
    • pp.3692-3697
    • /
    • 2015
  • A screw is a type of fastener characterized by a helical ridge known as thread. The demands for screws with the miniaturization and weight reduction are increasing for the trend of small size of mobile devices. The successful designs of mold and process are very important to obtain screws with good mechanical properties and high precision. In this study, the design of cold forging process of micro screw was carried out by using finite element method. In particular, in order to investigate the effects of die geometries and friction, design of experiment method was adopted and it was revealed that the friction was the dominant factor of folding defects. From these results, the design of die was modified and experiments were carried out with the modified die. From the experimental results, it was found that the folding defects disappeared.

Blank Design of The High Miniature Rectangular Vibrator Case for The Cellular Phone (Cellular Phone용 초소형 사각 진동모터 케이스의 블랭크 설계)

  • Ha, B.K.;Ku, T.W.;Kang, B.S.
    • Proceedings of the KSME Conference
    • /
    • 2000.11a
    • /
    • pp.754-758
    • /
    • 2000
  • Milli-structure components are classified as component group whose size is between macro and micro scale. that is, about less than 20mm and larger than 1mm. The forming of these components has a typical phenomenon of bulk deformation with thin sheets because of the forming size. In order to conventional metal forming, where numerical process simulation is already fully applied, the micro-forming process is characterized by some scale effects which have to be considered in an advanced process simulation. milli-structure rectangular cup drawing is analyzed and designed using the finite element method and experiment. The result of the finite element analysis is confirmed by a series of experiments.

  • PDF

Development of Injection Mold for Subminiature Lenses Using Shell Runners Containing Multiple Holes (다공성 박판형 러너를 사용한 초소형 렌즈 사출금형 개발)

  • Yoon, Seung Tak;Park, Keun
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.32 no.11
    • /
    • pp.961-968
    • /
    • 2015
  • This study aims to develop an efficient mold structure for the injection molding of a subminiature lens, using shell-type runners instead of traditional cylindrical runners. While the shell runner has the advantage of shorter cooling time due to its thinner geometry, this smaller thickness causes an increase in injection pressure. In this study, the design of the shell runner was modified to contain multiple holes for the purpose of reducing injection pressure. Numerical analyses were performed for shell runners of various hole-shapes, and the resulting filling and cooling characteristics were discussed; the rhombic hole showed the best result for both filling and cooling characteristics. Subsequently, injection molding experiments were performed using an injection mold fabricated based on the rhombic design. The lens parts were successfully molded with highly-reduced cycle time and without degradation of part quality.

숙련된 기술ㆍ첨단설비ㆍ양산성 바탕으로 글로벌 부품기업으로의 '도약' 시동

  • Park, Ji-Yeon
    • The Optical Journal
    • /
    • s.106
    • /
    • pp.33-35
    • /
    • 2006
  • 1987년 금형사업으로 출발한 유성정밀(주)(대표ㆍ김정기)은 금형설계 및 제작, 성형, 양산시스템을 구축하여 숙련된 노하우를 바탕으로 양질의 광학모듈을 개발 및 생산하고 있다. 2002년부터 광학사업부를 신설하여 고품질의 카메라폰용 렌즈모듈을 비롯하여 세계 최초로 초소형 Actuator 방식의 Auto Focus를 개발하는 등 다양한 첨단 광학부품 개발에 집중하여 해외 무대에서도 두각을 나타내고 있다. 현재 북경, 일본, 유럽, 북미 등 4개 사무소를 비롯하여 생산거점 및 네트워크를 구축하여 이미 글로벌 기업으로서의 입지를 다지고 세계 속의 부품기업으로 비상을 꿈꾸고 있다.

  • PDF

Fabrication of Lightweight Sandwich Structural Components with Superplastic Forming/Diffusion Bonding Technology (초소성/확산접합 기술을 이용한 티타늄 샌드위치 경량구조물 제작)

  • Lee, Ho-Sung;Yoon, Jong-Hoon;Yi, Yeong-Moo;Shin, Dong Hyuk
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.35 no.9
    • /
    • pp.778-782
    • /
    • 2007
  • In the present study, design and forming process of fabricating titianium lightweight components are developed with applicaton of superplastic forming and diffusion bonding technology. SPF/DB(Superplastic forming/Diffusion bonding) technology is one of the advanced technologies to reduce production cost and weight and currently applied to aircrafts and space launchers in foreign countries. The present study constructs an analysis model to predict superplastic forming behavior of titanium alloy, which is well known for its resistance to deform. The experimental results show the forming of titanium lightweight sandwich structure is successfully performed from 3 sheets of Ti-6Al-4V. The results demonstrate that the developed technology to process design of SPF/DB by the finite element method can be applied to various types of components.

Superplastic Microextrusion for Microgears (초소형 기어 제조를 위한 초소성 재료의 미세압출)

  • Kim, Jae-Yeon;Joo, Se-Min;Kim, Ho-Kyung
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.17 no.4
    • /
    • pp.1-7
    • /
    • 2008
  • Fine grained superplastic Zn-22%Al alloy was extruded using a laser machined micro-die to produce a micro-gear shaft. Extrusion process was conducted under a constant pressure at constant temperatures ranging from 503 to 563K. Laser machining was capable to machine a micro-die with close tolerances and adequate surface quality. The extrusion rate increased with extrusion load under constant extrusion temperature. The rate reached a steady state and became constant after a certain period. There was a small instantaneous stroke on application of the load and then a very brief primary stage which preceded steady-state flow. The micro-extrusion process was proven to produce a micro-gear shaft successfully using a fine grained superplastic Zn-22%Al alloy.

LED Beam Shaping and Fabrication of Optical Components for LED-Based Fingerprint Imager (LED 빔조형에 의한 초소형 이미징 장치의 제조 기술)

  • Joo, Jae-Young;Song, Sang-Bin;Park, Sun-Sub;Lee, Sun-Kyu
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.10
    • /
    • pp.1189-1193
    • /
    • 2012
  • The Miniaturized Fingerprint Imager (MFI) is a slim optical mouse that can be used as an input device for application to wireless portable personnel communication devices such as smartphones. In this study, we have fabricated key optical components of an MFI, including the illumination optical components and imaging lens. An LED beam-shaping lens consisting of an aspheric lens and a Fresnel facet was successfully machined using a diamond turning machine (DTM). A customized V-shaped groove for beam path banding was fabricated by the bulk micromachining of silicon that was coated with aluminum using the shadow effect in thermal evaporation. The imaging lens and arrayed multilevel Fresnel lenses were fabricated by electron beam lithography and FAB etching, respectively. The proposed optical components are extremely compact and have high optical efficiency; therefore, they are applicable to ultraslim optical systems.

Prediction of Joining Torque for Bit Depth of Subminiature Bolt (초소형 볼트의 비트 깊이에 따른 체결 토크 예측)

  • Lee, Hyun-Kyu;Park, Keun;Ra, Seung-Woo;Kim, Jong-Bong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.38 no.8
    • /
    • pp.917-923
    • /
    • 2014
  • Subminiature joining bolts are required for the electronic parts of gadgets such as mobile phones and watch phones. During the miniaturization of bolt heads, it is difficult to obtain sufficient joining force owing to the risk of shear fracture of the bolt head or severe plastic deformation on the bit region. In this study, the maximum joining torque for the bit depth was predicted using finite element analysis. A shear fracture test was conducted on a wire used in bolt forming. The results of this test were subjected to finite element analysis and a fracture criterion was obtained by comparing the experimental and analysis results. The shear fracture of the bolt head during joining was predicted based on the obtained criterion. Furthermore, the maximum joining torque was predicted for various bit depths. Fracture on the boundary between the bolt head and thread was found to occur in lower joining torque as bit depth increases.