• Title/Summary/Keyword: 초분광 영상센서

Search Result 63, Processing Time 0.018 seconds

Estimation of Moisture Content in Cucumber and Watermelon Seedlings Using Hyperspectral Imagery (초분광영상 이용 오이 및 수박 묘의 수분함량 추정)

  • Kim, Seong-Heon;Kang, Jeong-Gyun;Ryu, Chan-Seok;Kang, Ye-Seong;Sarkar, Tapash Kumar;Kang, Dong Hyeon;Ku, Yang-Gyu;Kim, Dong-Eok
    • Journal of Bio-Environment Control
    • /
    • v.27 no.1
    • /
    • pp.34-39
    • /
    • 2018
  • This research was conducted to estimate moisture content in cucurbitaceae seedlings, such as cucumber and watermelon, using hyperspectral imagery. Using a hyperspectral image acquisition system, the reflectance of leaf area of cucumber and watermelon seedlings was calculated after providing water stress. Then, moisture content in each seedling was measured by using a dry oven. Finally, using reflectance and moisture content, the moisture content estimation models were developed by PLSR analysis. After developing the estimation models, performance of the cucumber showed 0.73 of $R^2$, 1.45% of RMSE, and 1.58% of RE. Performance of the watermelon showed 0.66 of $R^2$, 1.06% of RMSE, and 1.14% of RE. The model performed slightly better after removing one sample from cucumber seedlings as outlier and unnecessary. Hence, the performance of new model for cucumber seedlings showed 0.79 of $R^2$, 1.10% of RMSE, and 1.20% of RE. The model performance combined with all samples showed 0.67 of $R^2$, 1.26% of RMSE, and 1.36% of RE. The model of cucumber showed better performance than the model of watermelon. This is because variables of cucumber are consisted of widely distributed variation, and it affected the performance. Further, accuracy and precision of the cucumber model were increased when an insignificant sample was eliminated from the dataset. Finally, it is considered that both models can be significantly used to estimate moisture content, as gradients of trend line are almost same and intersected. It is considered that the accuracy and precision of the estimating models possibly can be improved, if the models are constructed by using variables with widely distributed variation. The improved models will be utilized as the basis for developing low-priced sensors.

Development of Prediction Model for the Na Content of Leaves of Spring Potatoes Using Hyperspectral Imagery (초분광 영상을 이용한 봄감자의 잎 Na 함량 예측 모델 개발)

  • Park, Jun-Woo;Kang, Ye-Seong;Ryu, Chan-Seok;Jang, Si-Hyeong;Kang, Kyung-Suk;Kim, Tae-Yang;Park, Min-Jun;Baek, Hyeon-Chan;Song, Hye-Young;Jun, Sae-Rom;Lee, Su-Hwan
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.23 no.4
    • /
    • pp.316-328
    • /
    • 2021
  • In this study, the leaf Na content prediction model for spring potato was established using 400-1000 nm hyperspectral sensor to develop the multispectral sensor for the salinity monitoring in reclaimed land. The irrigation conditions were standard, drought, and salinity (2, 4, 8 dS/m), and the irrigation amount was calculated based on the amount of evaporation. The leaves' Na contents were measured 1st and 2nd weeks after starting irrigation in the vegetative, tuber formative, and tuber growing periods, respectively. The reflectance of the leaves was converted from 5 nm to 10 nm, 25 nm, and 50 nm of FWHM (full width at half maximum) based on the 10 nm wavelength intervals. Using the variance importance in projections of partial least square regression(PLSR-VIP), ten band ratios were selected as the variables to predict salinity damage levels with Na content of spring potato leaves. The MLR(Multiple linear regression) models were estimated by removing the band ratios one by one in the order of the lowest weight among the ten band ratios. The performance of models was compared by not only R2, MAPE but also the number of band ratios, optimal FWHM to develop the compact multispectral sensor. It was an advantage to use 25 nm of FWHM to predict the amount of Na in leaves for spring potatoes during the 1st and 2nd weeks vegetative and tuber formative periods and 2 weeks tuber growing periods. The selected bandpass filters were 15 bands and mainly in red and red-edge regions such as 430/440, 490/500, 500/510, 550/560, 570/580, 590/600, 640/650, 650/660, 670/680, 680/690, 690/700, 700/710, 710/720, 720/730, 730/740 nm.

Radiometric Cross Calibration of KOMPSAT-3 and Lnadsat-8 for Time-Series Harmonization (KOMPSAT-3와 Landsat-8의 시계열 융합활용을 위한 교차검보정)

  • Ahn, Ho-yong;Na, Sang-il;Park, Chan-won;Hong, Suk-young;So, Kyu-ho;Lee, Kyung-do
    • Korean Journal of Remote Sensing
    • /
    • v.36 no.6_2
    • /
    • pp.1523-1535
    • /
    • 2020
  • In order to produce crop information using remote sensing, we use classification and growth monitoring based on crop phenology. Therefore, time-series satellite images with a short period are required. However, there are limitations to acquiring time-series satellite data, so it is necessary to use fusion with other earth observation satellites. Before fusion of various satellite image data, it is necessary to overcome the inherent difference in radiometric characteristics of satellites. This study performed Korea Multi-Purpose Satellite-3 (KOMPSAT-3) cross calibration with Landsat-8 as the first step for fusion. Top of Atmosphere (TOA) Reflectance was compared by applying Spectral Band Adjustment Factor (SBAF) to each satellite using hyperspectral sensor band aggregation. As a result of cross calibration, KOMPSAT-3 and Landsat-8 satellites showed a difference in reflectance of less than 4% in Blue, Green, and Red bands, and 6% in NIR bands. KOMPSAT-3, without on-board calibrator, idicate lower radiometric stability compared to ladnsat-8. In the future, efforts are needed to produce normalized reflectance data through BRDF (Bidirectional reflectance distribution function) correction and SBAF application for spectral characteristics of agricultural land.