• Title/Summary/Keyword: 초동 위상

Search Result 6, Processing Time 0.017 seconds

Traveltime estimation of first arrivals and later phases using the modified graph method for a crustal structure analysis (지각구조 해석을 위한 수정 그래프법을 이용한 초동 및 후기 시간대 위상의 주시 추정)

  • Kubota, Ryuji;Nishiyama, Eiichiro;Murase, Kei;Kasahara, Junzo
    • Geophysics and Geophysical Exploration
    • /
    • v.12 no.1
    • /
    • pp.105-113
    • /
    • 2009
  • The interpretation of observed waveform characteristics identified in refraction and wide-angle reflection data increases confidence in the crustal structure model obtained. When calculating traveltimes and raypaths, wavefront methods on a regular grid based on graph theory are robust even with complicated structures, but basically compute only first arrivals. In this paper, we develop new algorithms to compute traveltimes and raypaths not only for first arrivals, but also for fast and later reflection arrivals, later refraction arrivals, and converted waves between P and S, using the modified wavefront method based on slowness network nodes mapped on a multi-layer model. Using the new algorithm, we can interpret reflected arrivals, Pg-later arrivals, strong arrivals appearing behind Pn, triplicated Moho reflected arrivals (PmP) to obtain the shape of the Moho, and phases involving conversion between P and S. Using two models of an ocean-continent transition zone and an oceanic ridge or seamount, we show the usefulness of this algorithm, which is confirmed by synthetic seismograms using the 2D Finite Difference Method (2D-FDM). Characteristics of arrivals and raypaths of the two models differ from each other in that using only first-arrival traveltime data for crustal structure analysis involves risk of erroneous interpretation in the ocean-continent transition zone, or the region around a ridge or seamount.

Machine Learning-based Phase Picking Algorithm of P and S Waves for Distributed Acoustic Sensing Data (분포형 광섬유 센서 자료 적용을 위한 기계학습 기반 P, S파 위상 발췌 알고리즘 개발)

  • Yonggyu, Choi;Youngseok, Song;Soon Jee, Seol;Joongmoo, Byun
    • Geophysics and Geophysical Exploration
    • /
    • v.25 no.4
    • /
    • pp.177-188
    • /
    • 2022
  • Recently, the application of distributed acoustic sensors (DAS), which can replace geophones and seismometers, has significantly increased along with interest in micro-seismic monitoring technique, which is one of the CO2 storage monitoring techniques. A significant amount of temporally and spatially continuous data is recorded in a DAS monitoring system, thereby necessitating fast and accurate data processing techniques. Because event detection and seismic phase picking are the most basic data processing techniques, they should be performed on all data. In this study, a machine learning-based P, S wave phase picking algorithm was developed to compensate for the limitations of conventional phase picking algorithms, and it was modified using a transfer learning technique for the application of DAS data consisting of a single component with a low signal-to-noise ratio. Our model was constructed by modifying the convolution-based EQTransformer, which performs well in phase picking, to the ResUNet structure. Not only the global earthquake dataset, STEAD but also the augmented dataset was used as training datasets to enhance the prediction performance on the unseen characteristics of the target dataset. The performance of the developed algorithm was verified using K-net and KiK-net data with characteristics different from the training data. Additionally, after modifying the trained model to suit DAS data using the transfer learning technique, the performance was verified by applying it to the DAS field data measured in the Pohang Janggi basin.

Possible Methods of Identifying Underground Cavities Using Seismic Waves (지진파를 이용한 지하 공동의 탐지 방법)

  • 김소구;마상윤;김지수
    • The Journal of Engineering Geology
    • /
    • v.6 no.3
    • /
    • pp.137-153
    • /
    • 1996
  • The purpose of this study is to investigate the possibilities of identifying and detecting underground cavities using seismic waves recorded by the fixed and mobile stations. During 18 months of field work we recorded chemical explosions near the Bongdarn station. Seismic Stations were installed on the free surface and underground inside the Samba mine. The seismograms at the fixed(lorg-term) seismic station show abrupt change of polarization characteristics which can he associated with the appearance of P-to-S converted phase(PS) at 150 ~ 200 msec after the first P arrival. This result indicates that converted phases are generated very near to the Bongdarn station at a depth of 190m. Shear-wave splitting phenomena have also been observeci The time delay between fast shear(fS) and slow shear(sS) waves ranges between 30 and 60 msec(average is 42 msec). However, exact time delay between the fast and the slow shear waves can not be accurately measured because of the very short time delay and limitation of sampling rate. Chemical explosion experiments were recorded at stations along various paths to contrast the seismic response of areas with and without cavities. The seismograms recorded at the stations installed at cavity areas show an abrupt change of polarization characteristics but not on the other stations. Seismic waves propagating through the cavity are characterized by the attenuation of high frequency waves and predominantly low frequency seismic waves after the S wave arrivals.

  • PDF

Evaluation and interpretation of the effects of heterogeneous layers in an OBS/air-gun crustal structure study (OBS/에어건을 이용한 지각구조 연구에서 불균질층의 영향에 대한 평가와 해석)

  • Tsuruga, Kayoko;Kasahara, Junzo;Kubota, Ryuji;Nishiyama, Eiichiro;Kamimura, Aya;Naito, Yoshihiro;Honda, Fuminori;Oikawa, Nobutaka;Tamura, Yasuo;Nishizawa, Azusa;Kaneda, Kentaro
    • Geophysics and Geophysical Exploration
    • /
    • v.11 no.1
    • /
    • pp.1-14
    • /
    • 2008
  • We present a method for interpreting seismic records with arrivals and waveforms having characteristics which could be generated by extremely inhomogeneous velocity structures, such as non-typical oceanic crust, decollement at subduction zones, and seamounts in oceanic regions, by comparing them with synthetic waveforms. Recent extensive refraction and wide-angle reflection surveys in oceanic regions have provided us with a huge number of high-resolution and high-quality seismic records containing characteristic arrivals and waveforms, besides first arrivals and major reflected phases such as PmP. Some characteristic waveforms, with significant later reflected phases or anomalous amplitude decay with offset distance, are difficult to interpret using only a conventional interpretation method such as the traveltime tomographic inversion method. We find the best process for investigating such characteristic phases is to use an interactive interpretation method to compare observed data with synthetic waveforms, and calculate raypaths and traveltimes. This approach enables us to construct a reasonable structural model that includes all of the major characteristics of the observed waveforms. We present results here with some actual observed examples that might be of great help in the interpretation of such problematic phases. Our approach to the analysis of waveform characteristics is endorsed as an innovative method for constructing high-resolution and high-quality crustal structure models, not only in oceanic regions, but also in the continental regions.

Cable-free Seismic Acquisition System (무선 탄성파 탐사 시스템)

  • Lee, Donghoon;Kim, Byung-Yeop;Jang, Seonghyung
    • Geophysics and Geophysical Exploration
    • /
    • v.19 no.3
    • /
    • pp.164-173
    • /
    • 2016
  • Cable-free seismic technology is to acquire seismic data with independent receivers which are not connected by cables. This is an effective method for survey designs with less topographical conditions. With technology advancement for cable-free receivers, reliable data quality, easy deployment, and picking up the receivers, the cable-free technology has begun to apply to land seismic acquisition. In this study we introduced a cable-free seismic system and its equipment. We tried to build up the cable-free seismic technology through the field application. In the seismic tomography field applications, the seismic signals of the cable-free receiver and cabled receiver with the same distance from the source show the same phase in early stage. The difference of the first arrival times between two signals is less than 0.4 ms, which could be accepted. In the field application for seismic reflection exploration, we acquired shot gathers with different source depth and dynamite charge. The shot gathers from cable-free and cabled system are similar to each other. With an efficient method for receiver deployment and survey design, the application of the cable-free technology will increase.

Study of Crustal Structure in North Korea Using 3D Velocity Tomography (3차원 속도 토모그래피를 이용한 북한지역의 지각구조 연구)

  • So Gu Kim;Jong Woo Shin
    • The Journal of Engineering Geology
    • /
    • v.13 no.3
    • /
    • pp.293-308
    • /
    • 2003
  • New results about the crustal structure down to a depth of 60 km beneath North Korea were obtained using the seismic tomography method. About 1013 P- and S-wave travel times from local earthquakes recorded by the Korean stations and the vicinity were used in the research. All earthquakes were relocated on the basis of an algorithm proposed in this study. Parameterization of the velocity structure is realized with a set of nodes distributed in the study volume according to the ray density. 120 nodes located at four depth levels were used to obtain the resulting P- and S-wave velocity structures. As a result, it is found that P- and S-wave velocity anomalies of the Rangnim Massif at depth of 8 km are high and low, respectively, whereas those of the Pyongnam Basin are low up to 24 km. It indicates that the Rangnim Massif contains Archean-early Lower Proterozoic Massif foldings with many faults and fractures which may be saturated with underground water and/or hot springs. On the other hand, the Pyongyang-Sariwon in the Pyongnam Basin is an intraplatform depression which was filled with sediments for the motion of the Upper Proterozoic, Silurian and Upper Paleozoic, and Lower Mesozoic origin. In particular, the high P- and S-wave velocity anomalies are observed at depth of 8, 16, and 24 km beneath Mt. Backdu, indicating that they may be the shallow conduits of the solidified magma bodies, while the low P-and S-wave velocity anomalies at depth of 38 km must be related with the magma chamber of low velocity bodies with partial melting. We also found the Moho discontinuities beneath the Origin Basin including Sari won to be about 55 km deep, whereas those of Mt. Backdu is found to be about 38 km. The high ratio of P-wave velocity/S-wave velocity at Moho suggests that there must be a partial melting body near the boundary of the crust and mantle. Consequently we may well consider Mt. Backdu as a dormant volcano which is holding the intermediate magma chamber near the Moho discontinuity. This study also brought interesting and important findings that there exist some materials with very high P- and S-wave velocity annomoalies at depth of about 40 km near Mt. Myohyang area at the edge of the Rangnim Massif shield.