• Title/Summary/Keyword: 초기 항복 강도

Search Result 81, Processing Time 0.025 seconds

나노질화 처리를 통한 사출금형 특성 연구

  • Sin, Hong-Cheol;Lee, Gyeong-Hwang;Kim, Dae-Uk
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.105-105
    • /
    • 2010
  • 자동차 차체부품에 적용되는 플라스틱 소재는 강도와 내마모성, 내충격성의 충분한 물성확보가 필요하며, 이에 플라스틱 소재의 기계적 특성 향상을 위해 유리 섬유가 다량 함유된 복합소재적용이 증가하고 있다. 반면 플라스틱이 고강도화함에 따라 제품 성형을 위한 사출 금형을 손상시키는 사례가 빈번하게 발생하고, 소재의 유동성 저하에 따른 사출 불량이 증가하고 있어 고강성 플라스틱 복합소재에 대응하는 고경도, 고내마모 특성이 부여된 사출 금형의 개발이 시급한 실정이다. 특히 사출 금형에 사용되는 소재는 기존 소재에 비해 우수한 내마모성과 함께 고광택을 유지하는 것이 더욱 중요해졌으며, 이에 따라 유럽, 일본과 국내 연구진에 의해 다양한 연구가 진행되고 있다. 그 중에서도 일본에서 개발되어 국내에도 소개된 래디칼 질화는 기존 질화법에 표면의 화합물 층만을 제어하는 것으로 다소의 표면 광택 효과는 있으나, 플라스틱 사출에 그대로 적용하기에는 무리가 따르므로 그 용도가 극히 제한적이다. 본 연구에서 적용한 나노 질화기술은 0.1torr 이하의 고진공에서 고밀도의 플라즈마 에너지를 발생시키는 방법으로 화합물층이 없는 나노 크기의 질화층을 소재 표면에 형성시키는 기술로서, 처리 후에도 표면의 색상 및 광택의 변화가 없는 것을 특징으로 한다. 또한 표면 경도 및 피로 특성을 향상시킴으로써 금형의 내구 수명을 향상시킬 것으로 기대된다. 본 연구에서는 KP4 금형 소재를 사용하여 플라즈마 이온 질화 시험 조건에 따른 소재의 경도 및 내마모 특성을 파악하고, 미세 조직 분석 및 XRD 분석 등을 통해 내마모 특성 향상에 대한 기본 특성을 평가하였다. 또한 인장시험을 통해 인장강도, 항복강도 및 연신율을 파악하고, 이를 토대로 고주기 피로시험을 실시함으로써 S-N curve를 얻고, 이를 통해 피로 강도 및 피로 수명에 미치는 나노 질화 처리의 영향을 파악하고자 하였다. 플라즈마 이온 질화 시험은 질소와 수소 비율($N_2:H_2$), 진공도, Screen bias voltage, Bias voltage를 변화시켰으며, 챔버 온도는 $400^{\circ}C$로 고정하였으며, 처리시간도 3시간으로 고정하였다. 질소와 수소의 비율은 3:1일 때 최고의 내마모 특성을 보였으며, 진공도는 내마모 특성에 큰 영향을 미치지 않는 것으로 관찰되었다. KP4의 초기 경도값은 약 302 Hv인 반면 최적의 나노 질화처리를 거친 시편에서는 800Hv 이상의 Vickers 경도값을 보였다. SEM 미세조직 분석과 EPMA를 통한 성분 분석을 시행한 결과 표층으로부터 약 $1.5{\mu}m$의 나노질화층을 확인할 수 있었다.

  • PDF

Ultimate Longitudinal Strength Analysis of Ship′s Hull Girder by Idealized Structural Unit Method (이상화(理想化) 구조요소법(構造要素法)에 의한 선체구조(船體構造)의 최종종강도(最終縱强度) 해석(解析))

  • Jeom-K. Paik
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.28 no.1
    • /
    • pp.139-149
    • /
    • 1991
  • In this paper, an efficient method for the ultimate longitudinal strength analysis of the double skin hull girder is presented by using idealized structural unit method. Idealized plate element subjected to biaxial load is developed taking account of initial deflection and welding residual stress. Interaction effect between local and global buckling in the whole structure is also taken into consideration. The reserve strength factor and reliability index for the example 40K double skin product oil carrier are evacuated against the ultimate longitudinal strength. It is concluded that the prudent method seems to be useful in the sense that the computing time required is very short while giving the reasonable solution.

  • PDF

Plasticity and Fracture Behaviors of Marine Structural Steel, Part IV: Experimental Study on Mechanical Properties at Elevated Temperatures (조선 해양 구조물용 강재의 소성 및 파단 특성 IV: 고온 기계적 물성치에 관한 실험적 연구)

  • Choung, Joon-Mo;Im, Sung-Woo;Park, Ro-Sik
    • Journal of Ocean Engineering and Technology
    • /
    • v.25 no.3
    • /
    • pp.66-72
    • /
    • 2011
  • This is the fourth of a series of companion papers dealing with the mechanical property reductions of various marine structural steels. Even though a reduction of the elastic modulus according to temperature increases has not been obtained from experiments, high temperature experiments from room temperature to $900^{\circ}C$ revealed that initial the yield strength and tensile strength are both seriously degraded. The mechanical properties obtained from high temperature experiments are compared with those from EC3 (Eurocode 3). It is found that the high temperature test results generally comply with the prediction values by EC3. Based on the prediction of EC3, time domain nonlinear finite element analyses were carried out for a blast wall installed on a real FPSO. After applying the reduced mechanical properties, corresponding to $600^{\circ}C$ to the FE model of the blast wall, more than three times the deflections were observed and it was observed that most structural parts experience plastic deformations exceeding the reduced yield strength at the high temperature. It is noted that a protection facility such as PFP (passive fire protection) should be required for structures likely to be directly exposed to fire and explosion accident.

A Simplified Approach to the Analysis of the Ultimate Compressive Strength of Welded Stiffened Plates (용접된 보강판의 압축 최종 강도의 간이 해석법)

  • C.D. Jang;Seung-Il Seo
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.30 no.2
    • /
    • pp.141-154
    • /
    • 1993
  • In this paper, a method to calculate the ultimate compressive strength of welded one-sided stiffened plates simply supported along all edges is proposed. At first initial imperfections such as distortions and residual stresses due to welding are predicted by using simplified methods. Then, the collapse modes of the stiffened plate are assumed and collapse loads for each mode are calculated. Among these loads, the lowest value is selected as the ultimate strength of the plate. Collapse modes are assumed as follows ; (1) Overall buckling of the stiffened plate$\rightarrow$Overall collapse due to stiffener bending (2) Local buckling of the plate part$\rightarrow$Local collapse of the plate part$\rightarrow$Overall collapse due to stiffener yielding (3) Local buckling of the plate part$\rightarrow$Overall collapse due to stiffener berthing (4) Local buckling of the plate part$\rightarrow$Local collapse of the plate part$\rightarrow$Overall collapse due to stiffener tripping. The elastic large deflection analysis based on the Rayleigh-Ritz method is carried out, and plastic analysis assuming hinge lines is also carried out. Collapse load is defined as the cross point of the two analysis curves. This method enables the utimate strength to be calculated with small computing time and a good accuracy. Using the present method, characteristics of the stiffener including torsional rigidity, bending and tripping can also be clarified.

  • PDF

Strengthening of Reinforced Concrete Continuous Beams in Flexure by Partial External Unbonded Tendons (철근콘크리트 연속보에서 부분프리스트레스 도입에 의한 휨보강 효과)

  • Yun, Hyun-Do;Yang, Il-Seung;Lim, Jea-Hyung;Moon, Jeong-Ho
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.10 no.1
    • /
    • pp.165-172
    • /
    • 2006
  • A variety of techniques for strengthening have been developed, including pate bonding, external prestressing and overslabbing. Expecially, a strengthening technique for reinforced concrete beams using external unbonded reinforcement offers advantages in speed and simplicity of installation. The purpose of this paper is to investigate the capabilities of a new retrofitting technique, namely external prestressing(out-cable), for flexural strengthening of beams. Results of 2 physical tests (external Post-tension and out-cable system specimen) on strengthened reinforced concrete continuous beams are reported and compared. It is shown that the out-cable system can provide strength enhancement.

A Geotechnical Parameter Estimation of Underground Structures in Elasto -plastic Condition (지하공간 건설시 탄.소성 모델에 의한 지반계수 추정)

  • Lee, In-Mo;Kim, Dong-Hyeon;Lee, U-Jin
    • Geotechnical Engineering
    • /
    • v.13 no.4
    • /
    • pp.85-94
    • /
    • 1997
  • The design and construction of underground structures contain many substantial mincer dainties. A reasonable estimation of geotechnical parameters is of paramount importance and must be one of the most difficult tasks in designing and constructing underground structures. If the plastic zone exists by tunnel excavation, the ground response may also be dependent on the yield criterion mainly composed of strength parameters. In order to estimate unknown model parameters from the in-situ measurements as well as prior estimates for designing tunnels which have plastic zones, the Extended Bayesian Method(EBM) is adopted : an elasto-plastic finite element program is linked to the EBM as a mathematical model to predict the ground response. Mohr-Coulomb failure criterion is used to represent the plastic behavior. A hypothetical underground site, where the ground behaves elasto-plastically, is adopted to demonstrate the validity of the proposed feedback system.

  • PDF

Behavior of Three Story Bearing Wall Structure under Lateral toad Reversals (반복 수평하중을 받는 3층 철근콘크리트 내력벽 아파트 구조물의 거동 특성)

  • Chang Kuk-Kwan;Oh Young-Hun;Kim Ki-Hyun
    • Journal of the Korea Concrete Institute
    • /
    • v.16 no.5 s.83
    • /
    • pp.627-634
    • /
    • 2004
  • The purpose of this study is to investigate seismic performance of a bearing wall system for apartment buildings. An 1/3 scale three-story specimen was constructed and tested under cyclic lateral loads. The specimen was consisted of pierced walls and coupling elements as well as floor slabs. The bearing wall system is considered to have a adequate deformation capacity up to $2.0\%$ of roof drift ratio, and the experimental results showed the ductile load-deformation characteristics even though some walls were failed in shear Nonlinear analysis was peformed to compare the load-deformation curve obtained from the experimental program. The result of nonlinear analysis could be useful to predict the actual behavior characteristics of the bearing wall system subjected to lateral loads.

Verification of NASCOM : Nonlinear Finite Element Analysis for Structural Concrete (NASCOM에 의한 실험결과 예측)

  • 조순호
    • Magazine of the Korea Concrete Institute
    • /
    • v.8 no.3
    • /
    • pp.187-195
    • /
    • 1996
  • A finite element formulation based on the CFT(Compression Field Theory), considering the effect of compression softening in cracked concrete, and macro-scopic and rotating crack models etc., was presented for the nonlinear behaviour of structural concrete. Considering the computational efficency and the ability of modelling the post-ultimate behaviour as major concerns, the Incremental displacement solution algorithm involving initial material stiffnesses and the relaxation procedure for fast convergence was adopted and formulated in a type of 8-noded quadrilateral isoparametric elements. The analysis program NASCOM(Non1inear Analysis of Structural Concrete by FEM : Monotonic Loading) developed in this way enables the predictions of strength and deformation capacities in a full range, crack patterns and their corresponding widths, and yield extents of reinforcement. As the verification purpose of NASCOM, the predictions were made for Bhide's Panel(PB21) and Leonhardt's deep beam tests. The predicted results shows somewhat stiff behaviour for the panel test, and vice versa for deep beam tests. More refining process would be necessary hereafter in terms of more accurately simulating the effects of tension-stiffening and compression softening in concrete.

Deformation analysis of shallow tunneling with unconsolidated soil using nonlinear numerical modeling (비선형 수치모델링을 이용한 미고결 지반 저토피 터널의 변형해석)

  • Lee, Jae-Ho;Kim, Young-Su;Yoo, Ji-Hyeung;Jeong, Yun-Young
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.12 no.2
    • /
    • pp.105-116
    • /
    • 2010
  • The estimation of surface settlement, ground behavior and tunnel displacement are the main factors in urban tunnel design with shallow depth and unconsolidated soil. On deformation analysis of shallow tunnel, it is important to identify possible deformation mechanism of shear bands developing from tunnel shoulder to the ground surface. This paper investigated the effects of key design parameter affecting deformation behavior by numerical analysis using nonlinear model incorporating the reduction of shear stiffness and strength parameters with the increment of the maximum shear strain after the initiation of plastic yielding. Numerical parametric studies are carried out to consider the reduction of shear stiffness and strength parameters, horizontal stress ratio, cohesion and shotcrete thickness.

A Study on Flexural Behavior of Reinforced Concrete Beam Using Cockle Shells as Fine Aggregate (잔골재로 고막 패각을 사용한 철근콘크리트 보의 휨 거동에 관한 연구)

  • Kim, Jeong-Sup;Cho, Cheol-Hee;Kim, Kang-Sup
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.8 no.4
    • /
    • pp.265-273
    • /
    • 2004
  • As a result of compressive strength experiment, rupture compressive strength showed more increases in specimens of 15% and 20% of Cockle shells in those of non-mixture. The specimen which was used general aggregate showed the highest value and ductility capacity was getting decreased as the amount of cockle shell was getting increased in the ductility capacity of specimen. We might conclude that the reason of the yield strength's decline was the lack of the bond strength which was caused by the amount of cockle shell.