• Title/Summary/Keyword: 초기 처짐

Search Result 95, Processing Time 0.023 seconds

A Study on Fatigue Behavior of Two-Span Fiber Reinforced Concrete Beam (강섬유 보강 철근콘크리트 2경간 연속보의 피로거동에 관한 연구)

  • Kwak, Kae-Hwan;Cho, Seon-Jeong;Seok, In-Soo
    • Journal of the Korea Concrete Institute
    • /
    • v.15 no.2
    • /
    • pp.163-172
    • /
    • 2003
  • As concrete structures are getting larger, higher, longer, and specialized, it is more required to develop steel fiber concrete and apply to the real world. In this research, it is aimed to have fatigue strength examined, varying the steel fiber content by 0%, 0.75%, 1.00%, 1.25%, by experimental study of Two-spans Beam with Steel Fibrous with repeated loads. The ultimate load and the initial load of flexural cracking were measured by static test. In addition, the load versus strain relation, load versus strain relation, load versus deflection relation, crack pattern and fracture mode by increasing weight was observed. On the other hand, the crack propagation and the modes of fracture according to cycle number and the relation of cycle loading to deflection relation and strain relation was observed by fatigue test. As the result of fatigue test, Two-spans Beam without Steel Fibrous was failed at 60~70% of the static ultimate strength and it could be concluded that fatigue strength to two million cycle was around 67.2% by S-N curve. On the other hand, that with Steel Fibrous was failed at 65~85% of the static ultimate strength and it could be concluded fatigue strength to two million cycle around 71.7%.

Behavior of FRP-Concrete Composite Decks with the Mechanical Connection (기계적 합성이 적용된 FRP-콘크리트 합성 바닥판의 거동 분석)

  • Kim, Sung-Tae;Park, Sung-Yong;Cho, Jeong-Rae;Kim, Byung-Suk;Cho, Keun-Hee
    • Journal of the Korea Concrete Institute
    • /
    • v.22 no.5
    • /
    • pp.609-616
    • /
    • 2010
  • FRP-concrete composite deck, an innovative system, is composed of concrete in the top and FRP panel in the bottom. Bottom FRP panel can reduce self weight and improve workability. This system requires strong connection between FRP and concrete. Therefore coarse sand coating was previously applied on FRP to improve the bonding. In this study, concrete wedge method is newly introduced to enhance both vertical bond and fatigue performance. Three FRP-concrete composite deck specimens with the concrete wedges were manufactured, and static and fatigue tests were carried out. The results showed that the new FRP-concrete composite deck satisfied deflection and crack width limits set by the design codes. And the fatigue test showed that the composite deck was capable of two million load cycles under 50% of its static strength. Based on the results, it can be concluded that that this new system has outstanding mechanical and durability performance, and therefore, satisfactorily be used in designing FRP-concrete composite deck.

Mechanical Performance Evaluation of RC Beams with FRP Hybrid Bars under Cyclic Loads (FRP 하이브리드 보강근을 가지는 RC보의 반복하중에 대한 역학적 성능 평가)

  • Hwang, Chul-Sung;Park, Jae-Sung;Park, Ki-Tae;Kwon, Seung-Jun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.21 no.1
    • /
    • pp.9-14
    • /
    • 2017
  • In the present work, a mechanical performances under cyclic loading in RC (Reinforced Concrete) beams with normal steel and FRPH (Fiber Reinforced Plastic Hybrid) bar are investigated. For the work, RC beam members with $200{\times}200{\times}2175mm$ of geometry and 24 Mpa of design strength are prepared, and 4-point-bending tests are performed for evaluation of cracking, yielding, and ultimate loads. Through static loading test, 48.9kN and 36.0 kN of yielding loads are measured for normal RC and FRPH beam, respectively. They have almost same ultimate load of 50.0 kN. Typical tension hardening behavior is observed in FRPH beam, which is caused by the behavior of FRPH bar with tension hardening. In cyclic loading conditions, FRPH beam has more smaller crack width and scattered crack pattern, and it shows more elastic recovery than normal RC beam. The energy dissipation ratio in FRPH beam is 0.83, which is greater than 0.62 in normal RC beam and it shows more effective resistance to cyclic loadings.

Analytical Study on Flexural Behavior of Concrete Member using Heavyweight Waste Glass as Fine Aggregate (고밀도 폐유리를 잔골재로 사용한 RC 부재의 휨거동에 관한 해석적 연구)

  • Cha, Kyoung-Moon;Choi, So-Yoeng;Kim, Il-Sun;Yang, Eun-Ik
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.24 no.1
    • /
    • pp.88-96
    • /
    • 2020
  • It were found that the heavyweight waste glass can be used as a construction materials including concrete from previous experimental studies. In this study, in order to evaluate the structural behavior of RC members using heavyweight waste glass as fine aggregate, a flexural behavior test was performed. And then, its results were compared with those obtained from non-linear finite element model analysis. From the results, when the heavyweight waste glass as fine aggregate in RC member, the area of compressive crushing and the number of cracks increased, however, the mean of cracking spacing decreased. Also it had reduced the ductility at high loading stage. For this reason, the same analysis method about the RC member using natural sand as fine aggregate did not predict the initial stiffness, yield load and maximum load on the flexural behavior of the RC members using heavyweight waste glass as fine aggregate. On the other hand, when it is analytically implemented the reduction of neutral axis depth due to developed compression crushing, the results of non-linear finite element analysis could be predicted the experimental results, relatively well.

Behavior Evaluation of Thin Bonded Continuously Reinforced Concrete Overlay on Aged Jointed Concrete Pavement(2) (노후 줄눈 콘크리트 포장 보수를 위한 얇은 연속 철근 콘크리트 덧씌우기 포장의 거동 평가(2))

  • Ryu, Sung-Woo;Cho, Yoon-Ho
    • International Journal of Highway Engineering
    • /
    • v.12 no.4
    • /
    • pp.101-110
    • /
    • 2010
  • In this paper, it has been studied about the CRCO to maintain or rehabilitate the aged JCP. The CRCO and JCO was constructed at useless section of Seo-Hae-Ahn express highway in South Korea. The performance evaluation was conducted. Especially, it was focused on the roll of longitudinal reinforced steels inserted into the CRCO. On crack survey results from field construction section, the reflection cracks at joint of the existing pavement occurred in CRCO. However, due to the constraints of longitudinal reinforced steels, crack width was small. Total crack length and quantity in the CRCO more than that in the JCO. And crack spacing in the CRCO was narrower than it in the CRCP. Through the bonding strength test results, if the cold milling and cleaning as well as surface treatment is applied, there will be no debonding problem at interlayer in the early age. From analysis of the horizontal behavior at the joint, the longitudinal reinforced steels constrained crack width which became wider than initial state over time. Also, that steel in the CRCO reduced the horizontal movement due to temperature variation(4 times than that in the JCO). But, if interface is debonded, the roll decreased. Vertical VWG data showed that CRCO did not occur debonding problem at steel location, but there was some problem in JCO. It was confirmed by field coring. The tensile strain appeared in the CRCO, But the compressive strain occurred in the JCO in early age. Through the FWD test result, deflection in the CRCO was less than that in the JCO. And K value in the CRCO was greater than it in the JCO.

Load Carrying Capacity Assessment of Bridges with Elastic Supports Application (탄성지점의 적용에 따른 교량의 내하력평가)

  • Yang, Seung-Hyun
    • Journal of Korean Society of Steel Construction
    • /
    • v.24 no.5
    • /
    • pp.595-603
    • /
    • 2012
  • This study applied elastic supports in order to evaluate load carrying capacity using measurement data obtained from load tests actively and utilizing various evaluation methods. In order to confirm the adequacy of structural analysis based on elastic supports and to improve the reliability of experiment results, we conducted a deflection test with flexural beams prepared as overhanging beams and, based on the results, performed precision safety diagnosis for real bridges under public service for improving the load carrying capacity evaluation method for bridges under public service. In the results of the bending test, compared to deflection calculated by the existing method, deflection obtained by applying elastic supports was closer to the actually measured deflection. In the results of evaluating load carrying capacity for a 3 span continuous steel box girder bridge just after its completion, load carrying capacity by elastic supports was smaller by up to 39% than that by the existing method. When the load carrying capacity of bridges is evaluated by the existing method the results vary among engineers due to lack of guidelines for evaluation such as the application of stress modification factor. This study was conducted as an effort to solve this problem through active research.

Evaluation of Early age Performance of Geogrid-reinforced Asphalt Pavements (섬유그리드 보강 아스팔트 포장 초기 공용성 평가)

  • Yeo, Hyun-Dong;Kim, Gwang-Duk;Kwon, Soo-Ahn;Jeong, Jin-Hoon
    • International Journal of Highway Engineering
    • /
    • v.12 no.4
    • /
    • pp.53-60
    • /
    • 2010
  • Geogrid-reinforced asphalt pavement is a pavement type applicable to overlay for repair in addition to new construction. The geosynthetic materials are placed between the asphalt layers to stop or delay propagation of the cracking existing at lower layers and to reduce the rutting. In this study, the cracking, rutting, IRI, and deflection were investigated to compare the performance between geogrid-reinforced asphalt pavement and ordinary or polymer modified asphalt pavement. Based on field conditions, the 11 sections were classified into 3 groups; sections proper to compare, sections with restrictions to compare, sections with difficulties in comparing, and the data was statistically analyzed. Larger resistance to rutting and increased IRI were measured at the geogrid-reinforced asphalt pavement sections comparing to the ordinary or polymer modified asphalt pavement sections. However, the deflections of the pavements were similar and the resistance to the cracking could not be compared because of short pavement lives.

Evaluation of Flexural Strength of Hybrid Girder composed of HSB800 and HSB600 Steel (HSB800 및 HSB600 강재를 적용한 하이브리드거더의 휨강도 평가)

  • Park, Yong Myung;Kang, Ji Hoon;Lee, Kun Joon;Kim, Hee Soon
    • Journal of Korean Society of Steel Construction
    • /
    • v.26 no.6
    • /
    • pp.581-594
    • /
    • 2014
  • In this paper, flexural resistance of hybrid girder under uniform bending moment was evaluated, which is composed of HSB800 and HSB600 steel for the flange and web, respectively. Doubly-symmetric and monosymmetric sections with noncompact or compact flange and slender, noncompact or compact web were considered. Nonlinear analyses with 3-dim. shell element model were performed to determine the 'flexural resistance of section' and the 'lateral torsional buckling strength' by taking initial imperfection and residual stress into account. The numerical results were compared with the AASHTO LRFD and Eurocode 3 specifications and also the applicability of AASHTO LRFD appendix A6 was examined for the sections with noncompact and compact web.

Topology Optimization Design of Machine Tools Head Frame Structures for the Machining of Aircraft Parts (항공기부품가공용 공작기계 헤드프레임 구조의 위상최적화 설계)

  • Yun, Taewook;Lee, Seoksoon
    • Journal of Aerospace System Engineering
    • /
    • v.12 no.4
    • /
    • pp.18-25
    • /
    • 2018
  • The head frame structure of a machine tool for aircraft parts, which requires machining precision and machining of difficult-to-cut materials is required to be light-weighted for precision high-speed machining and to minimize possible deformation by cutting force. To achieve high stiffness and for light-weight structure optimization design, a preliminary model was designed based on finite element analysis. The topology optimization design of light-weight, high stiffness, and low vibration frame structure were performed by minimizing compliance. As a result, the frame weight decreased by 17.3%, the maximum deflection was less than 0.007 mm, and the natural frequency increased by 30.6%. The static stiffness was increased in each axis direction and the dynamic stiffness exhibited contrary results according to the axis. Optimized structure with the high stiffness of low vibration in topology optimization design was confirmed.

A Study on Insulation·Fire Proof Materials Using Silica Aerogels (실리카 에어로젤을 이용한 단열·내화재 개발에 관한 연구)

  • Cho, Myung Ho;Hong, Sungchul
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.10
    • /
    • pp.6816-6822
    • /
    • 2015
  • In this study, silica aerogel-glass wool composites were developed for improvement of thermal conductivity and overcoming the water adsorption of glass wool boards. Silica aerogel-glass wool composites were prepared by glass wool and silica aerogel with liquid binder. Mixtures with binder were composed of CMC (carboxymethyl cellulose) and silica aerogel for glass wool board. Silica aerogel-glass wool composite boards were had $0.065g/cm^3$ density by impregnation silica aerogel where from origin glass wool board at $0.048g/cm^3$ density. Thermal conductivity of silica aerogel-glass wool composites were 0.0315 W/mK (up to 7.4% thermal resistance) and fire penetration time came to 362 seconds (up to 2.7 times stronger than origin glass wool board). In addition, hydrophobic aerogel characteristics prevented the adsorption of water onto silica aerogel-glass wool composite boards that was good for lightweight.