Browse > Article
http://dx.doi.org/10.5762/KAIS.2015.16.10.6816

A Study on Insulation·Fire Proof Materials Using Silica Aerogels  

Cho, Myung Ho (Division of Global Entrepreneurship, Hoseo University)
Hong, Sungchul (Department of Convergence Technology for Safety and Environment, Hoseo University)
Publication Information
Journal of the Korea Academia-Industrial cooperation Society / v.16, no.10, 2015 , pp. 6816-6822 More about this Journal
Abstract
In this study, silica aerogel-glass wool composites were developed for improvement of thermal conductivity and overcoming the water adsorption of glass wool boards. Silica aerogel-glass wool composites were prepared by glass wool and silica aerogel with liquid binder. Mixtures with binder were composed of CMC (carboxymethyl cellulose) and silica aerogel for glass wool board. Silica aerogel-glass wool composite boards were had $0.065g/cm^3$ density by impregnation silica aerogel where from origin glass wool board at $0.048g/cm^3$ density. Thermal conductivity of silica aerogel-glass wool composites were 0.0315 W/mK (up to 7.4% thermal resistance) and fire penetration time came to 362 seconds (up to 2.7 times stronger than origin glass wool board). In addition, hydrophobic aerogel characteristics prevented the adsorption of water onto silica aerogel-glass wool composite boards that was good for lightweight.
Keywords
Board; glass wool; insulation; silica aerogel; thermal conductivity;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 KS F ISO 9705, "Fire Tests-full-scale Room Test for Surface Products", Korean Agency for Technology and Standards, 2009.
2 A. Venkateswara Rao, D. Haranath, "Effect of methyltrimethoxysilane as a synthesis component on the hydrophobicity and some physical properties of silica aerogels", Microporous and Mesoporous Materials, 30, pp. 267-273, 1999. DOI: http://dx.doi.org/10.1016/S1387-1811(99)00037-2   DOI
3 E. M. Sparrow, and R. D. Cess, "Radiation Heat Transfer", Augmented Ed., pp. 255-271, McGraw-Hill, New York, 1978
4 M. Dowson et. al., "Streamlined life cycle assessment of transparent silica aerogel made by supercritical drying." pp. 396-404, Applied Energy, 2012. DOI: http://dx.doi.org/10.1016/j.apenergy.2011.11.047   DOI
5 G. A. Domoto, and W. C. Wang, "Radiative Transfer in Homogeneous Nongray Gases with Nonisotropic Particle Scattering", Journal of Heat Transfer, 96, pp. 385-390, 1974 DOI: http://dx.doi.org/10.1115/1.3450210   DOI
6 L. K. Matthews, R. Viskanta, and F. P. Incropera, "Combined Conduction and Radiation Heat Transfer inPorous Materials Heated by Intense Solar Radiation", Journal of Solar Energy Engineering, 107, pp. 29-34, 1985. DOI: http://dx.doi.org/10.1115/1.3267649   DOI
7 J. Marschall, J. Maddren, and J. Parks, "Internal Radiation Transport and Effective Thermal Conductivity of Fibrous Ceramic Insulation", AIAA, pp. 2001-2822, 2001. DOI: http://dx.doi.org/10.2514/6.2001-2822   DOI
8 R. Siegel, and J. R. Howell, "Thermal Radiation Heat Transfer", 2nd Ed., pp. 426-427, McGraw-Hill, New York, 1981.
9 R. Baetens et al., "Vacuum insulation panels for building applications: A review and beyond." Energy and Buildings, 42(2), pp. 147-172, 2010. DOI: http://dx.doi.org/10.1016/j.enbuild.2009.09.005   DOI
10 J. M. Schultz, K. I. Jensen, and F. H. Kristiansen, "Super insulating aerogel glazing." Solar Energy Materials and Solar Cells, 89, pp. 275-285, 2005. DOI: http://dx.doi.org/10.1016/j.solmat.2005.01.016   DOI
11 K. Daryabeigi, "Effective Thermal Conductivity of High Temperature Insulations for Reusable Launch Vehicles", NASA TM-1999-208972, 1999.
12 F. Schwertfeger, D. Frank, M. Schmidt, "Hydrophobic waterglass based aerogels without solvent exchange or supercritical drying", Journal of Non-Crystalline Solids, 225, pp. 24-29, 1998. DOI: http://dx.doi.org/10.1016/S0022-3093(98)00102-1   DOI
13 Dotts, R. L., Curry, D. M., and Tillian, D. J., "Orbiter Thermal Protection System", pace Shuttle Technology Conference Proceedings, Part 2, pp. 1062-10811, 1985.
14 S. D. Williams, and D. M. Curry, "Predictions of Rigid Silica Based Insulation Conductivity", pp. 3276, NASA, 1993
15 J. Y. Song, J. P. Kim, Y. J. Cho and N. K. Park, "A Study on Combustion Characteristic of Building Materials" Proceedings of the Korean Institute of Fire Science and Engineering Conference, pp. 16-19, 2001.
16 I. H. Yeo, "Fire resistant performance of high-strength concrete column covered with aerogel composite inorganic blanket and gypsum board, 12, pp. 39-45, 2012.
17 H. Yokogawa, M. Yokoyama, "Hydrophobic silica aerogel", Journal of Non-Crystalline Solids, 186, pp. 23-29, 1995. DOI: http://dx.doi.org/10.1016/0022-3093(95)00086-0   DOI
18 Douglas M. Smith, Alok Maskra, Ulrich Boes, "Aerogel-based thermal insulation", Journal of Non-Crystalline Solids, 225, pp. 254-259, 1998. DOI: http://dx.doi.org/10.1016/S0022-3093(98)00125-2   DOI
19 G. Carlson, D. Lewis, K. McKinley, J. Richardson, T. Tillotson, "Aerogel commercialization: technology, markets and costs", Journal of Non-Crystalline Solidsl. 186, pp. 372-379, 1995. DOI: http://dx.doi.org/10.1016/0022-3093(95)00069-0   DOI
20 Lawrence W. Hrubesh, "Aerogel applications", Journal of Non-Crystalline Solids, 225, pp. 335-342, 1998. DOI: http://dx.doi.org/10.1016/S0022-3093(98)00135-5   DOI
21 M. Schmidt, F. Schwertfeger, "Applications for silica aerogel products", Journal of Non-Crystalline Solids, 225, pp. 364-368, 1998. DOI: http://dx.doi.org/10.1016/S0022-3093(98)00054-4   DOI
22 G. Herrmann, R. Iden, M. Mielke, F. Teich, B. Ziegler, "On the way to commercial production of silica aerogel", Journal of Non-Crystalline Solids, 186, pp. 380-387, 1995. DOI: http://dx.doi.org/10.1016/0022-3093(95)90076-4   DOI