• Title/Summary/Keyword: 초기 지중온도

Search Result 30, Processing Time 0.027 seconds

Effect of initial ground temperature measurement on the design of borehole heat exchanger (초기 지중온도 측정이 지중 열교환기 설계에 미치는 영향)

  • Song, Yoon-ho;Kim, Seong-Kyun;Lee, Kang-Kun;Lee, Tae-Jong
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.06a
    • /
    • pp.600-603
    • /
    • 2009
  • We compared relative importance of thermal conductivity and initial ground temperature in designing borehole heat exchanger network and also we test accuracy of ground temperature estimation in thermal response test using a proven 3-D T-H modeler. The effect of error in estimating ground temperature on calculated total length of borehole heat exchanger was more than 3 times larger than the case of thermal conductivity in maximum 20% error range. Considering 10% of error in estimating thermal conductivity is generally acceptable, we have to define the initial ground temperature within 5% confidence level. Utilizing the mean annual ground surface temperature and the geothermal gradient map compiled so far can be a economic way of estimating ground temperature with some caution. When performing thermal response test for estimating ground temperature as well as measuring thermal conductivity, minimum 100 minutes of ambient circulation is required, which should be even more in case of very cold and hot seasons.

  • PDF

The Comparison of the In-Situ Thermal Response Tests and CFD Analysis of Vertical-type Geothermal Heat Exchanger (수직형 지중 열교환기의 현장 열응답 시험과 CFD 해석 비교)

  • Sim, Yong-Sub;Lee, Hee-Sang
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.7
    • /
    • pp.3164-3169
    • /
    • 2013
  • In this study, a series of CFD analysis was performed in order to predict the leaving water temperature and the slope of in-situ thermal response tests of the vertical-type geothermal heat exchangers. The geothermal heat exchanger and surrounding ground formation were modeled using GAMBIT and simulation was used by utilizing FLUENT which is commercial CFD code. Comparing with the results of CFD and in-situ thermal response tests, the results of CFD was presented good agreement with $0.5^{\circ}C$ difference of Leaving Water Temperature and with 1.6% difference of the Slope.

Analysis of In-situ Temperature Measurement at Gonjiam Cold Storage Cavern (곤지암 지하암반 저장고 온도계측 결과 분석)

  • Lee Gyu-Sang;Lee Chung-In
    • Tunnel and Underground Space
    • /
    • v.15 no.3 s.56
    • /
    • pp.169-176
    • /
    • 2005
  • The decreasing pattern of underground temperature measured at 'Gonjiam cold storage cavern' during 7 years which was the first commercial scale underground food storage cavern in Korea was analyzed. The variation of energy consumption was discussed by comparing the consumed energy at the initial operation stage with that at later stage, when the temperature distribution reached a stabilized condition. The point to be considered at the design stage was also discussed by comparing the required refrigerator capacity at the initial operation stage with that at later stage. The extra energy to freeze the groundwater contained in pore space was discussed by analyzing the changing pattern of the rock temperature. The variation of measured rock temperature was compared with the estimated temperature using a numerical code, FLAC. The accuracy of the numerical estimation was discussed by comparing the heat flux measured by the operation time of the refrigerator with that estimated numerically.

Weather Characteristic and Growth of a Forest Ginseng Cultivation Site (산양삼 재배지의 기상특성 및 생육에 관한 연구)

  • Lee, Dong-Sup
    • Journal of Korean Society of Forest Science
    • /
    • v.99 no.6
    • /
    • pp.863-870
    • /
    • 2010
  • We investigated geographical condition and soil characteristic of ginseng cultivation site. At all sites, crown density adjusted by 80%. and Air and soil temperature were also measured. The geographical condition vary ato all sites. and soil shows similar characteristics with typical forest soil of Korea. The results shows the Air temperature needs to be higher than $15^{\circ}C$ for seed budding at April When soil temperature reach at 8, leaf of foest ginseng starts to bud. A forest ginseng is influenced by forest type, planting type and budding rates. In the case of a seedling planting, an seeding emergence rate is high, but the rate is decreased rapidly after three years On the other hand, direct seeding shows lower seedling emergence rate, but survival rate is higher than seedling-planting.

Analysis of Soil Thermal Conductivities, Borehole Thermal Resistances and Initial Soil Temperature with In-Situ Testing in South Korea (현지 측정에 의한 남한지역의 지중유효열전도도, 보어홀 전열저항 및 초기온도 분석)

  • Ro, Jeong-Geun;Yon, Kwangseok;Song, Heon
    • Journal of the Korean Solar Energy Society
    • /
    • v.32 no.5
    • /
    • pp.68-74
    • /
    • 2012
  • Investigation of the effective soil thermal conductivity($k$) is the first step in designing the ground loop heat exchanger(borehole) of a geothermal heat pump system. Another important factor is the borehole thermal resistance($R_b$). Thermal response tests offer a good method to determine the ground thermal properties for the total heat transport in the ground. The first step is measured for initial soil temperature. This is done by supplying a only pump power into a borehole heat exchanger. They need to supply into water unload heat power more than 30 minutes. In this study, the initial soil temperature was found to analysis $14.1{\sim}16.0^{\circ}C$,the ratio was 68.7% represented. In this case of $k$, was 2.1~3.0 $W/m{\cdot}k$, $R_b$ was 0.11~0.20 $m{\cdot}K/W$. In this work, it is also shown that the distribution of a soil thermal conductivity and borehole thermal resistance were on the influence of initial soil temperature. And soil thermal conductivity was related with factors of equation by linear least square method, borehole thermal resistance was on the influence of composite factors.

The Effect of Construction Methods on Geothermal Exchange Rates of Cast-in-place Energy Piles (현장타설말뚝형 에너지 파일의 시공형태별 지중 열교환량에 관한 연구)

  • Park, Yong-Boo;Nam, Yu-Jin;Sim, Young-Jong;Sohn, Jeong-Rak
    • Land and Housing Review
    • /
    • v.3 no.2
    • /
    • pp.169-175
    • /
    • 2012
  • In recent, there are many studies associated with energy piles to save initial construction cost for ground source heat pump system. In this study, to evaluate geothermal exchange rates two types (a connection type and a slinky type) of cast-in-place energy piles (PRD, 4.5m in depth, 1,200 mm in diameter) were constructed for the tests and their efficiencies were compared with numerical analysis results. As a result, starting with operation, geothermal exchange rate gradually decreases due to exchange of lower ground temperature. In the case of connection type, temperature difference is $0.37^{\circ}C$ in heating mode and $0.34^{\circ}C$, in cooling mode, respectively. In addition, in case of a connection type, geothermal exchange rate in heating mode is 2,314W/m and in cooling mode, 252.2W/m whose value is 9% higher than in heating mode. In the case of slinky type, the average geothermal exchange rate in heating mode is 168.0W/m, which is about 27% lower than that of connection type.

Soil Surface Energy Balance and Soil Temperature in Potato Field Mulched with Recycled-Paper and Black Plastic Film (감자밭의 재생종이 및 흑색 플라스틱 필름 멀칭에 따른 지표면 에너지 수지와 토양온도의 변화)

  • 최일선;이변우
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.46 no.3
    • /
    • pp.229-235
    • /
    • 2001
  • The thermal and photometric properties of mulching materials modify the radiation and energy balance on the mulched soil surface and thereby change the soil temperature. The soil surface energy balances and soil temperatures under the mulching treatments of non-mulched control, recycled paper (RPM), and black polyethylene film (BPFM) were compared before and after the establishment of potato canopy. On August 30 in 1998 when potato was not emerged yet and solar radiation was 17.9 MJ $m^{-2}$${day}^{-1}$ , the net radiation of the soil surface was estimated as 10.(1, 2. 4, and 1.3 MJ $m^{-2}$${day}^{-1}$ under the control, BPFM, and RPM, respectively. The sensible and latent heat loss from the soil surface was 9.65 MJ $m^{-2}$${day}^{-1}$ in the control, most of the net radiation being lost through evaporation and convection, whereas it amounted only to 1.39 MJ $m^{-2}$${day}^{-1}$ in BPFM and 1.36 MJ $m^{-2}$${day}^{-1}$ in RPM. Therefore, the soil heat fluxes were 0.36 1.02, and 0.06 MJ m$^{-2}$ day$^{-1}$ under the control, BPFM and RPM, respectively. On September 27 when potato canopy was fully developed, the soil surface net radiation in the control was sharply decreased as compared to that of Aug. 30, whereas the net radiation of the mulched soil surfaces showed little changes. The soil heat flux was -0.01, 0.95, and 0.12 MJ $m^{-2}$${day}^{-1}$ at the soil surface under the control, BPFM and RPM, respectively. As the mulching treatments brought about such alteration of energy partitioning into the soil, the highest soil temperature was recorded in BPFM and the lowest in RMP without regard to potato canopy development. However, the soil temperature differences among the treatments become smaller when potato canopy were fully developed.

  • PDF

A Development of Automation system and a way to use Solar Energy System Efficiently in Greenhouse(2) - Study on improvement of growth and yield of a cucumber in soil heating - (시설원예 태양열 시스템의 효율적 이용과 자동화 장치개발(2) -지중가온에 의한 오이 생육 및 수량성 향상에 관한 연구-)

  • 김진현;오중열;구건효;김태욱
    • Journal of Bio-Environment Control
    • /
    • v.7 no.1
    • /
    • pp.25-33
    • /
    • 1998
  • Root zone temperature have influenced on protected cultivation in winter season. Especially root zone temperature is acted on limiting factor in crop cultivation. This study was conducted to obtain optimum temperature of root zone in Protected cultivation Root zone was warmed by heated water($28^{\circ}C$) flowing through the PPC pipe(${\phi}15$) buried depth 40 cm. And the flowing water was heated by solar system. Minimum air temperature during night time was set at $14^{\circ}C$ and maximum air temperature during day time was set at $28~30^{\circ}C$ the growing period of cucumber was from Nov. 6, 1996 to Jan. 30, 1997. The results are summarized as follows. 1. Average soil temperature at 15~20 cm depth was $22^{\circ}C$ at warming plots, $17~18^{\circ}C$ at non-warming plots 2. Early growth in leaf length, stem diameter, number of leaves and leaf area for 30 days after planting were accelerated by root zone warming. Especially, the grawing rate of soil warming plots was higher 27% in leaf length, 51% in leaf number, 150% in leaf area than non-warming Plots. Above-ground and underground part of warming plots was higher 117%, 56% than non-warming plots. 3. In total yield analysis, number of fruits were 614 in soil warming and 313 in non-warming plots. In the result, total yield of soil warming plots was increased with 196% than non-warming plots. 3. In total yield analysis. number of fruits were 614 in soil warming and 313 in non-warming plots. In the result. total yield of soil warming plots was increased with 196% than non-warming plots.

  • PDF

The Growth of Cucumber and Variation of Soil Temperature Used by Warming Water Irrigation System (가온관수 시스템에 따른 지온변화와 오이의 생육)

  • 김태욱;김진현
    • Journal of Bio-Environment Control
    • /
    • v.10 no.1
    • /
    • pp.15-22
    • /
    • 2001
  • A soil temperature was known as extremely important factor in terms of measuring the values of the growth and yield of vegetable in the greenhouse. A low temperature water irrigation was had much trouble in its growth. This study was performed to analyze the effect of the heating water irrigation on the soil temperature and the growth of a cucumber within a greenhouse environment. Soil temperature was 5-7$^{\circ}C$ below to 10cm in depth and 2-3$^{\circ}C$ to 20cm when the irrigation water temperature was 13$^{\circ}C$ (non-warme water irrigation). Soil temperature was similar to irrigation water temperature at 5cm in depth and was 1.5-2$^{\circ}C$ below at 10cm when the irrigation water temperatures were 2$0^{\circ}C$, $25^{\circ}C$. The early growth rates of heating water irrigation were 109-110% in plant height, 107-108% in leaf number, 103% in node number compared with those of unheated water irrigation for 30 days after planting it. The rates of total yield were 115% in 2$0^{\circ}C$ water irrigation plots and 121% in $25^{\circ}C$ water irrigation plots while those of unheated water irrigation plots were.

  • PDF

A Study for Predicting Adfreeze Bond Strength from Shear Strength of Frozen Soil (동결토 전단강도를 활용한 동착강도 산정에 관한 연구)

  • Choi, Chang-Ho;Ko, Sung-Gyu
    • Journal of the Korean Geotechnical Society
    • /
    • v.27 no.10
    • /
    • pp.13-23
    • /
    • 2011
  • Bearing capacity of pile foundations in cold region is dominated by adfreeze bond strength between surrounding soil and pile perimeter. It denotes that adfreeze bond strength is the most important design parameter for foundations in cold region. Adfreeze bond strength is affected by various factors like 'soil type', 'frozen temperature', 'normal stress acting on soil/pile interface', 'loading rate', 'roughness of pile surface', etc. Several methods have already been proposed to estimate adfreeze bond strength during past 50 years. However, most methods have not considered the effect of normal stress for adfreeze bond strength. In this study, both freezing temperature and normal stress have been controlled as primary factors affecting adfreeze bond strength. A direct shear box was used to measure adfreeze bond strength between sand and aluminum under different temperature conditions. Based on the test results, the relation between shear strength of frozen sand and adfreeze bond strength have been investigated. The test results showed that both of shear strength and adfreeze bond strength tend to increase with decreasing frozen temperature or increasing confining pressure. The ratio of shear strength and adfreeze bond strength, expressed as $r_s$, decreased initially frozen section but increased at much lower frozen temperature and there were uniform intervals under the different normal stress conditions. A method for predicting adfreeze bond strength using $r_s$ has finally been proposed in this study.