• Title/Summary/Keyword: 초기 변형률)

Search Result 303, Processing Time 0.027 seconds

Shear band Formation in an Elasto-Plastic Orthotropic Material Under Plane Stress Deformation (평면 응력상태에서 이등방성탄-소성 재료의 전단띠 형성)

  • 임세영
    • The Korean Journal of Rheology
    • /
    • v.7 no.2
    • /
    • pp.128-138
    • /
    • 1995
  • 본 논문에서는 전단띠형성에 있어서 전단변형의 집중화 현상을 이방성 탄소성 재료 에 대해서 해석하였고 소성스핀과 비등방성이 전단띠 형성에 미치는 영향을 연구하였다. 평 면응력 상태에서 소성스핀을 갖고있는 이방성 탄-소성 재료에 대해서 재료 분랑ㄴ정 해서 을 수행하여 변형률 집중화의 시작에 미치는 소성스핀과 비등방성의 효과를 연구하였다. 해 석 결과 이방성 재료에서의 전단띠 형성은 압축 또는 인장의 하중 형태나 이방성 축의 초기 각도 그리고 소성스핀의크기에 따라 그 시작이 촉진되거나 지연되었고 전단띠 생성의 방향 도 달라졌다.

  • PDF

Constitutive Law of Reinforced Concrete Subjected to Biaxial Tension (2축 인장을 받는 철근콘크리트의 구성방정식)

  • Cho, Jae-Yeol;Kim, Nam-Sik;Cho, Nam-So;Choun, Young-Sun
    • Journal of the Korea Concrete Institute
    • /
    • v.15 no.1
    • /
    • pp.69-77
    • /
    • 2003
  • One directional and biaxial tension tests of 13 reinforced concrete panels were conducted to derive a constitutive law of concrete. Based on the test results, a model equation is derived for the stress-strain relationship of concrete in tension. Main test variables are reinforcement ratio and the load ratio applied in two directions. In addition a failure envelope of concrete in tension-tension region is suggested based on the initial crack occurrence. Test results show that the concrete carries substantial tensile stress even after cracking occurrence. However, the application of this proposed stress-strain relationship for concrete is limited to the case where the direction of reinforcement coincides with the direction of the applied principal stresses.

Constitutive Model of Laterally Confined High Strength Concrete (횡구속된 고강도 콘크리트의 구성모델)

  • Yun, Sung-Hwan;Kang, Yoon-Sig;Park, Tae-Hyo
    • Journal of the Korea Concrete Institute
    • /
    • v.22 no.4
    • /
    • pp.481-488
    • /
    • 2010
  • Since existing constitutive models developed for confined normal strength concrete overestimate ductility when they are applied to confined high strength concrete, these models cannot be directly applied to confined high strength concrete. In an effort to solve this problem, an accurate stress-strain relationship of the hihg strength concrete needs to be formulated by examining the confinement effects due to increase of the concrete strength. In this study, a constitutive model is developed to express the stress-strain relationship of confined high strength concrete by carrying out regression analysis of the main parameters affection strength and ductile behavior of reinforced high strength concrete columns. Twenty-five test specimens were chosen from the reported experimental studies in the literature. The experimental results of stress-strain relationships of show a good agreement with results of the stress-strain relationships of suggested high strength concrete, covering a strength range between 60 and 124 MPa.

Multi-physics Modelling of Moisture Related Shrinkage in Concrete (콘크리트 수분관련 수축에 관한 다중물리모델)

  • Lee, Chang-Soo;Park, Jong-Hyok
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.9 no.2
    • /
    • pp.1-9
    • /
    • 2009
  • Water binder ratio combine high-performance concrete shrinkage of less than 0.4 to determine the transformation to a total shrinkage of water to move outside and internal consumption of moisture due to drying shrinkage and autogenous shrinkage, and then, the relative humidity changes and strain to be approached by surface physics describe the relationship between self-desiccation and autogenous shrinkage was set. To verify the self-desiccation in the humidity shrinkage and humidity measurements performed, and the research model, Tazawa, CEB-FIP model than to let the measure and the most similar results in this study based on self-desiccation model, autogenous shrinkage didn't represent the linear shrinkage by the drying shrinkage of the external moving but exponential relationships, unlike with the nature and rapid in the early age properly describes the attributes in shrinkage could see. After this research to move moisture and to reflect the shrinkage model, temperature, moisture transfer, strain analysis by multi-physics model is very similar to the results of mock-up specimen measurements performed for this research, the value measured by the internal consumption of moisture, therefore self-desiccation and a multi-physics model considering autogenous shrinkage might be relevant.

Turbine Case Containment Capability Evaluation Using Finite Element Analysis (유한요소해석을 이용한 터빈 케이스의 컨테인먼트 성능 평가)

  • Jun-woo Baek;Sang-woo Kim;Soo-yong Lee
    • Journal of Aerospace System Engineering
    • /
    • v.17 no.5
    • /
    • pp.19-27
    • /
    • 2023
  • In this study, we used finite element analysis to conduct a containment capability evaluation of a turbine case. When analyzing the impact behavior of structures subjected to impact loads, it is important to consider the strain rate, as it affects the increase in flow stress. Therefore, we applied three material models (Cowper-Symonds, Johnson-Cook, and Modified Johnson-Cook) for the impact analysis. To validate these material models, we performed an impact test on an aluminum 6061 plate. By comparing and analyzing the experimental and analytical results, we determined that the Modified Johnson-Cook material model exhibited the least error. As a result, we applied this material model to evaluate the containment capability of the turbine case. This evaluation involved determining the occurrence of penetration, as well as the stress and strain induced at the collision area due to the initial velocity of the blade.

Static Behavior of Concrete-Filled and Tied Steel Tubular Arch(CFTA) Girder (CFTA거더의 정적 거동연구)

  • Kim, Jong-In;Kim, Doo-kie;Lee, Jang-hyeong;Kim, Jeong-Ho
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.13 no.3 s.55
    • /
    • pp.225-231
    • /
    • 2009
  • This study introduces the CFTA girder(Concrete-Filled and Tied Steel Tubular Arch Girder) which is a combined structural system of traditional CFT, arch, and prestress structures. Static load tests and structural behavior analyses were carried out for a 25m long CFTA girder. In the analysis, each load of 58kN, 88kN, 148kN, 207kN,and 298kN was applied incrementally at the positions of 1.0 m distances in both directions from the center of the girder. On each test, strain and displacement were measured. Linear static FEM analyses using Strand7 code were also performed to check the structural stability and to investigate the effects of prestressing(${\pm}$20%) and material property(Young's modulus) on the displacement and strain. The results of this study are summarized as follows: the initial strain & displacement under selfweight and prestressing were influenced with the variation of prestressing, but they were mainly effected only by Young's modulus when additional loads were applied.

Effect of Residual Shear Strain on the Relationship between Volumetric Strain and Effective Stress after Liquefaction (액상화 후 잔류전단변형률이 체적변형률과 유효응력 관계에 미치는 영향)

  • Kwon, Youngcheul
    • Journal of the Korean GEO-environmental Society
    • /
    • v.11 no.11
    • /
    • pp.55-62
    • /
    • 2010
  • The settlements by liquefaction seldom occur uniformly because of soil homogeneity, however differential settlements are major cause of the damages to structures. From the past researches, author paid attention to the fact that stress history during undrained cyclic shear process affects greatly on the volumetric strains of the post-liquefaction. Therefore, the effect of the residual shear strain in cyclic shear process was examined in this study. The experiment apparatus based on strain control with volumetric strain control device was used for the study to investigate the effect of the residual strain on the relationship between volumetric strain and effective stress of clean and granite sandy soil. It could be seen an insignificant difference in the volumetric strain after liquefaction under various residual shear strain conditions in the case of clean sand. On the other hand, in granite sandy soil, the volumetric strain after liquefaction was small when the lower level of the residual shear strain was applied. And, the residual shear strain during cyclic shear affected the shape of the relation curve between effective stress and volumetric strain as well.

Analysis of Stress Relaxation Behaviors of Geosynthetics (지오신세틱스의 응력완화거동 해석)

  • Jeon, Han-Yong
    • Journal of the Korean Geosynthetics Society
    • /
    • v.5 no.3
    • /
    • pp.31-36
    • /
    • 2006
  • In this study, stress relaxation behaviors of nonwoven geotextile and geomembrane which have protection, filtration and drainage, water barrier functions, respectively were examined. 'Theory of transition phenomen' was applied to interpretate the stress relaxation behaviors of two geosynthetics. The initial and later relaxation times for stress relaxation behaviors of geosynthetics were derived from the constitutive equations. The initial relaxation behaviors of these geosynthetics were dependent on the additional strains and were especially faster with temperature. Finally, both relaxation times of geosynthetics were shorter with additional strain and temperature and the reduction of relaxation times of nonwoven geotextile were larger than those of geomembrane.

  • PDF

Analysis of Stress Relaxation Behaviors of Geosynthetics (토목 합성재료의 응력완화 거동 해석)

  • Jeon, Han-Yong;Park, Young-Mok;Chung, Jin-Gyo
    • Journal of the Korean Geosynthetics Society
    • /
    • v.3 no.4
    • /
    • pp.21-27
    • /
    • 2004
  • Stress relaxation behaviors of nonwoven geotextile and geomembrane which have protection, filtration and drainage, water barrier functions, respectively were analyzed. 'Theory of transition phenomena' was applied to interpretate the stress relaxation behaviors of two geosynthetics. The initial and later relaxation times for stress relaxation behaviors of geosynthetics were derived from the constitutive equations. The initial relaxation behaviors of these geosynthetics were dependent on the additional strains and were especially faster with temperature. Finally, both relaxation times of geosynthetics were shorter with additional strain and temperature.

  • PDF

In-Situ Stress Measurements for Excavation of Deep Cavern (대심도 지하 공간 굴착을 위한 초기지압 측정 결과)

  • Lee, Hong-Gyu
    • Tunnel and Underground Space
    • /
    • v.19 no.6
    • /
    • pp.567-582
    • /
    • 2009
  • The world's largest nucleon decay experiment facility is constructed at a depth of approximately 1,000meters, in the Kamioka mine, Japan. Because of the character as a large cavern in deep underground, in-situ stress measurements were conducted to provide basic information for design of the cavern. Three overcoring methods were used: 8-element embedding gauges developed by Japanese Central Research Institute of Electric Power Industry, hemispherical ended borehole technique with eight strain cross-gauges, and Hollow Inclusion Cell with 12 strain gauges. The principle stresses were not perfectly similar in each measurement. The average values of the 6 stress element were used to provide the direction and the magnitude of three principle stress.