DOI QR코드

DOI QR Code

Constitutive Law of Reinforced Concrete Subjected to Biaxial Tension

2축 인장을 받는 철근콘크리트의 구성방정식

  • Published : 2003.02.01

Abstract

One directional and biaxial tension tests of 13 reinforced concrete panels were conducted to derive a constitutive law of concrete. Based on the test results, a model equation is derived for the stress-strain relationship of concrete in tension. Main test variables are reinforcement ratio and the load ratio applied in two directions. In addition a failure envelope of concrete in tension-tension region is suggested based on the initial crack occurrence. Test results show that the concrete carries substantial tensile stress even after cracking occurrence. However, the application of this proposed stress-strain relationship for concrete is limited to the case where the direction of reinforcement coincides with the direction of the applied principal stresses.

콘크리트의 응력-변형률 관계 곡선을 도출하기 위하여 총 13개의 철근콘크리트 패널실험체를 이용하여 1축 및 2축 인장실험을 수행하였다. 실험결과를 이용하여 콘크리트의 인장 응력-변형률 관계곡선의 모델을 수식으로 제안하였다. 주요 실험변수로는 철근비와 도입된 2축 하중비가 고려되었다. 또한 초기균열하중을 이용하여 인장-인장 영역에서의 파괴포락선을 제시하였다. 실험결과 콘크리트는 균열 이후에도 인장에 어느 정도 견디는 것으로 나타났다. 그러나 본 연구에서 제안한 콘크리트의 응력-변형률 관계 곡선은 철근의 방향과 하중의 방향 혹은 주응력의 방향이 일치하는 경우에 가장 적합할 것으로 판단된다.

Keywords

References

  1. Hsu T. T. C., 'Unified theory of Reirnforced Concrete,'University of Houston, 1992
  2. Belarbi A, 'Stress-Strain Relationships of Reinforced Concrete in Biaxial Tension-Compression,' Ph. D.,University of Houston, Texas, 1991
  3. Stevens N. J., Uzumeri S. M, Collins M. P., and Will G.T., 'Constitutive Model for Reinfoced Concrete Finite Element Analysis,' ACI Structural Journal, Vol.88, No.1, 1991, pp.49-59
  4. Balarbi A. and Hsu T. T. C., 'Constitutive Law of Concrete in Tension and Reinforcing Bar Stiffened by Concrete,' ACI Structural journal, Vol.91, No.4, 1994, pp.465-473
  5. Chan H. C., Cheung Y. K., and Huang Y. P., 'Crack Analysis of Reinforced Concrete Tension Members,' journal of Structural Engineering, ASCE, Vol.118, No.8, 1992, pp.2118-2132 https://doi.org/10.1061/(ASCE)0733-9445(1992)118:8(2118)
  6. Kupfer H., and Hilsdorf H. K, 'Behavior of Concrete Under Biaxial Stress,' ACI Journal, Proceedings,Vol.66, No.8, 1969, pp.656-666
  7. Hussein A., and Marzouk H., 'Behavior of High-Strength Concrete under Biaxial Stresses,' ACI Materials Journal, Vol.97, No.1, 2000, pp.27-36
  8. Russo G. and Romano F., 'Cracking Response of RC Members to Uniaxial Tension,' Journal of Structural Engineering, ASCE, Vol.118, No.5, 1992, pp.1172-1191 https://doi.org/10.1061/(ASCE)0733-9445(1992)118:5(1172)
  9. 조재열 외, '원자력발전소 격납건물 벽체의 균열거동,'한국콘크리트학회 논문집, 2002.
  10. Neville A. M., 'Hardened Concrete : Physical and Mechanical Aspects,' ACI Monograph No.6, ACI Iowa State Univ. Press,'1971, pp.260
  11. Tamai S., Shima H., Izumo J., and Okamura H.,'Average Stress-Strain Relationship in Post Yield Range of Steel Bar in Concrete,' Concrete Library of JSCE, No.11, 1988, pp.117-129
  12. Cervanka V., 'Constitutive Model for Cracked Reinforced Concrete,' Journal of ACI, Proceedings, Vol.82, No.6, 1985, pp.877-882
  13. Hsu T. T. C., 'Softened Truss Model Theory for Shear and Torsion,' Journal of ACI, Proceedings, Vol.85, No.6, 1988, pp.624-635
  14. Vecchio F. and Collins M. R., 'The Response of Reinforced Concrete to In-PIane Shear and Normal Stress,' Publication No. 82-03, Department of Civil Engineering, University of Toronto, 1982
  15. Bhide S. B. and Collins M. R., 'Reirforced Concrete Elements in Shear and Tension,' Publication No. 87-02, Department of Civil Engineering, University of Toronto, 1987