• Title/Summary/Keyword: 초기 강성

Search Result 547, Processing Time 0.031 seconds

A Study for the Screen Door Motor System Driving Stiffness of Dynamic Load Condition (스크린 도어 모터 시스템의 동하중 상태 구동강성 검증)

  • Lee, Jung-Hyun;Lee, Seon-Bong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.2
    • /
    • pp.164-170
    • /
    • 2016
  • The initial urban railway was only required to perform its role as means of transportation. As the time of staying in an underground platform was extended, it has been faced with the issues of environmental improvement as a living space. Therefore, the sliding automatic door, which is the basis of the screen door, is used widely for large distribution stores, hospitals, restaurants, and public offices for customers' convenience and as a convenient method to control access. Therefore, screen doors are required for the purpose of customers' convenience, securing safety, establishing pleasant station buildings, and energy savings. It would be also necessary to develop the optimal design technology for a screen door system through the design of element parts and to ensure reliability. Therefore, this paper calculated, interpreted, and verified the theoretical weight of the composition parts to verify the design drive hardness of the motor for screen doors necessary for the safety of subways.

Strength Prediction of Spatially Reinforced Composites (공간적으로 보강된 복합재료의 강도예측)

  • 유재석;장영순;이상의;김천곤
    • Composites Research
    • /
    • v.17 no.5
    • /
    • pp.39-46
    • /
    • 2004
  • In this study, the strength of spatially reinforced composites (SRC) are predicted by using stiffness reduction for each structural element composed of a rod stiffness in each direction and a matrix stiffness proportional to its rod volume fraction. Maximum failure strain criteria is applied to rod failure, and modified Tsai-Wu failure criteria to matrix failure. The material properties composed of the tensile failure strain of a rod, the compressive failure strain of 3D SRC, the tensile and compressive strength of the 3D SRC in the $45^{\cir}$ rotated direction from a rod and the shear strength of the 3D SRC are measured to predict the SRC strength. The strength distributions of the 3D/4D SRC in rod and off-rod direction have the largest and the smallest values, respectively. A variable load step is selected to increase an efficiency of strength distribution calculation. Uniform load step is applied when a load history is needed. The results of compressive strength from analysis and experiment show the 18 % difference though the initial slop is coincident with each other.

Evaluation of Load-Carrying Capacity Loss due to Corrosion in Thin-Walled Section Steel Members (판폭두께비가 큰 휨부재의 부식발생에 따른 구조성능평가에 관한 연구)

  • Chung, Kyung Soo;Park, Man Woo
    • Journal of Korean Society of Steel Construction
    • /
    • v.21 no.6
    • /
    • pp.619-626
    • /
    • 2009
  • The use of thin-walled flexural members has proven to be a practical way to achieve the lowest cost in the construction of prefabricated long-span, low-rise building frames in steel. On the other hand, most of these structures are subjected to corrosion due to environmental exposure, which can reduce their carrying capacity. Corrosion damage is a serious problem for these structures as it causes thickness loss. That is, the class of a section (plastic, compact, non-compact, or slender) may change from one to another due to the loss of thickness of the compression flange and web due to corrosion. In this study, the effects of corrosion on thin-walled members in long-span steel frames were evaluated with regard to the moment-rotation curve, initial stiffness, maximum load capacity, stiffness in the post-maximum capacity, and energy absorption.

A Study for the Screen Door System Driving Stiffness of Motor Control Method (모터 제어 방식의 스크린 도어 시스템 구동강성 검증)

  • Lee, Jung-Hyun;Lee, Seon-Bong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.4
    • /
    • pp.2385-2390
    • /
    • 2015
  • In the beginning run, urban railway had been required as transportation. But now days urban railway have stayed in the platform for long time, the platform is faced the problem that is improvement of environment as one of the living space. Thus, sliding automatic door on the basis of screen door have used in huge distribution market, hospital, restaurant and public office because it is comfortable that customer's convenience and entrance are controled. So screen door not only requires customer's convenience and safe, clean area and energy conservation but demands optimal design technology development of screen door system that is confirmed by element parts of design and confidence. In this paper, For secure confidence of screen door, after as modeling roller and frame's system, confirming the result for qualification of driving stiffness. And then it suggests that it is possible to increase performance and declines fraction defective of element's part.

An Experimental Study on Bending Behaviour of Steel Grid Composite Deck Joint (격자형 강합성 바닥판 이음부의 휨거동에 관한 실험적 연구)

  • Shin, Hyun Seop;Lee, Chin Hyung;Park, Ki Tae
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.16 no.5
    • /
    • pp.68-77
    • /
    • 2012
  • The joint of existing steel grid composite deck is composed of lap splice of reinforcing bar with end hooks and field-placed concrete. In this study, bending tests of deck joint composed of concrete shear key and high tension bolts are carried out for the design variable, concrete shear key strengthened with steel plate or not, and test results are compared with flexural performance of the existing deck joint. Test results showed that the mechanical deck joint has about 30% ~ 60% more ultimate bending strength than the existing joint. According to analysis results of moment-curvature relationship, the initial bending stiffness of the existing deck joint is some higher than that of mechanical joint. But, after crack failure the structural performance of the existing deck joint is rapidly reduced. Furthermore, the deck joint with the strengthened shear key with steel plate has more bending moment capacity than the deck joint without strengthening. And strengthening of shear key has positive influence on the increase of bending stiffness.

A Study on the Deformation Behavior of Nonwoven Geotextiles Reinforced Soil Walls Based on Literature Reviews (문헌조사에 근거한 부직포 보강토옹벽의 거동에 관한 연구)

  • Won, Myoung-Soo;Kim, Tae-Wan;Roh, Jae-Kune;Kim, Hyoung-Wan
    • Journal of the Korean Geosynthetics Society
    • /
    • v.9 no.1
    • /
    • pp.21-30
    • /
    • 2010
  • To understand the deformation behavior of nonwoven geotextiles(NWGT) reinforced soil wall, analyses of load-elongation properties, soil-reinforcement interface friction, laboratory model tests, and field cases throughout literature reviews are being studied in this paper. According to the analyses results, the stiffness and tensile strength of NWGT is increased in proportion to confinement pressures, and the interface shear strength at soil-NWGT appeared to be stronger than soil-geogrid interface. The deformation at the beginning of loading on NWGT reinforced soil wall is larger than geogrid reinforced soil wall, but the wall deformation with NWGT is smaller than the wall of geogrid after passing some loading point in laboratory model tests. Case analysis results have shown that the facing of NWGT reinforced soil wall should be rigid enough to be used as a permanent wall, and NWGT and in-situ poor soil can be used for reinforcement and backfill respectively if the wall is constructed as pre-reinforced soil body and with post-facing that has a full-height rigid concrete.

  • PDF

Vibration Reduction Effects of Stay Cable Due to Friction Damper (마찰댐퍼에 의한 사장 케이블의 진동저감 효과)

  • Kim, Hyung Ku;Yhim, Sung Soon
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.17 no.2
    • /
    • pp.54-61
    • /
    • 2013
  • Stay cable has a strong axial rigidity due to large initial tension and, on the other hand, it has a weak laterally flexural rigidity. Wind loads or traffic loads cause the cables to vibrate significantly and affect the mechanical properties and the performance of cables of cable-stayed bridge (CSB). Therefore, the development of vibration reduction design is an urgent task to control the vibration vulnerable long-span bridges. As Friction damper (FD) shows to reduce the amplitude and duration time of vibration of cable of CSB from measured date in field test, friction damper can be considered that it is effective device significantly to reduce the amplitude and duration time in vibration of cable of CSB under traffic load, wind load and so on. Vibration characteristics of cable can change according to manufacturing method and type of established form. Nevertheless, analysis method in this study can present the design of friction damper for vibration reduction of cable of cable-stayed bridge from now on.

Phytase-producing Microorganisms and Their Effects on the Fermentation of Soybean and Corn Meals -Isolation of Phytase-producing Microorganisms and Conditions for Enzyme Production- (콩과 옥수수 가루의 발효과정에서의 Phytase 생산균과 그들의 발효에 미치는 영향 - Phytase 생산균의 분리와 효소생산조건 -)

  • 강성구;강성국;정희종
    • Microbiology and Biotechnology Letters
    • /
    • v.16 no.6
    • /
    • pp.433-473
    • /
    • 1988
  • Two isolates of C-7 and S-34, which were identified as Bacillus licheniformis and Enterobacter cloacae, were shown the highest phytase productivities among the 23 and 44 strains isolated from the fermenting corn and soybean meals, respectively. The phytase productivity with B. lichenifrmis was maximized at pH 6.0, 3$0^{\circ}C$ after 5 days of incubation and E. cloacae was maximized at pH 1.0, 35$^{\circ}C$ after 5 days of incubation. The bacterial phytase productivity with each bacterium was significantly increased or decreased by the addition of various concentrations of 6 carbon and 7 nitrogen sources including glucose, sucrose, KNO$_3$, and NH$_4$Cl.

  • PDF

Dynamic Behavior of 2D 8-Story Unbraced Steel Frame with Partially Restrained Composite Connection (합성반강접 접합부를 갖는 2차원 8층 비가새 철골골조의 동적거동)

  • Kang, Suk Bong;Lee, Kyung Taek
    • Journal of Korean Society of Steel Construction
    • /
    • v.19 no.5
    • /
    • pp.503-513
    • /
    • 2007
  • The seismic responses of a building are affected by the connection characteristics that have effects on structural stiffness. In this study, push-over analysis and time history analysis were performed to estimate structural behavior of 2D eight-story unbraced steel structures with partially restrained composite connections using a nonlinear dynamic analysis program. Nonlinear $M-{\theta}$characteristics of connection and material inelastic characteristics of composite beam and steel column were considered. The idealization of composite semi-rigid connection as fully rigid connection yielded an increase in initial stiffness and ultimate strength in the push-over analysis. In time history analysis, the stiffness and hysteretic behavior of connections have effects on base-shear force, maximum story-drift and maximum moment in beams and columns. For seismic waves with PGA of 0.4 g, the structure with the semi-rigid composite connections shows the maximum story-drift with less than the life safety criteria by FEMA 273 and no inelastic behavior of beam and column, whereas in the structure with rigid connections, beams and columns have experienced inelastic behaviors.

Flexural Performance of Reinforced Concrete Beams with Recycled Aggregates Suffering from Sustained Load (지속하중을 경험한 철근콘크리트 보의 골재 종류에 따른 휨거동 특성)

  • Ji, Sang-Kyu;Yun, Hyun-Do;Kim, Sun-Woo;Lee, Eon-Young
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.11 no.5
    • /
    • pp.135-143
    • /
    • 2007
  • This paper presents results of an experimental study designed to investigate the effect of sustained load on the flexural performance of reinforced recycled aggregate concrete beams. In this experimental program, three beams with recycled aggregate replacement percentages(natural 100%, recycled coarse aggregate 100%, recycled fine aggregate 50%) were tested up to failure after sustained loading($0.5M_n$) for one year. The experimental results showed that reinforced concrete beams using recycled aggregate(water absorption : 1.86~3.64%) concrete showed the same flexural performance as that of natural aggregate concrete beam. Current the ACI code underestimated experimental obtained ultimate flexural strength of beams irrespective of usage of recycled aggregates.