• 제목/요약/키워드: 초기화 방법

검색결과 1,346건 처리시간 0.034초

커널을 이용한 전역 클러스터링의 비선형화 (A Non-linear Variant of Global Clustering Using Kernel Methods)

  • 허경용;김성훈;우영운
    • 한국컴퓨터정보학회논문지
    • /
    • 제15권4호
    • /
    • pp.11-18
    • /
    • 2010
  • Fuzzy c-means(FCM)는 퍼지 집합을 응용한 간단하지만 효율적인 클러스터링 방법 중 하나이다. FCM은 여러 응용 분야에서 성공적으로 활용되어 왔지만, 초기화와 잡음에 민감하고 볼록한 형태의 클러스터들만 다룰 수 있는 문제점이 있다. 이 논문에서는 이러한 FCM의 문제점을 해결하기 위해 전역 클러스터링(global clustering) 기법과 커널 클러스터링(kernel clustering) 기법을 결합하여 새로운 비선형 클러스터링 기법인 커널 전역 FCM(kernel global fuzzy c-means, KG-FCM)을 제안한다. 전역 클러스터링은 클러스터링의 초기화를 위한 방법 중 하나로, 순차적으로 클러스터를 하나씩 추가함으로써 초기화에 민감한 FCM의 한계를 극복할 수 있도록 해준다. FCM의 잡음 민감성과 볼록한 클러스터들만 다룰 수 있는 한계를 극복하기 위한 방법은 여러 가지가 있으며 커널 클러스터링이 그 중 하나이다. 커널 클러스터링은 사용하는 커널을 바꿈으로써 쉽게 확장이 가능하므로 이 논문에서는 커널 클러스터링을 사용하였다. 두 방법을 결합함으로써 제안한 방법은 위에서 언급한 문제점들을 해결할 수 있으며, 이는 가상 및 실제 데이터를 이용한 실험 결과를 통해 확인할 수 있다.

유전자 알고리즘을 이용한 구조 적응형 자기구성 지도의 자식 노드 가중치 초기화 (Optimal Weight Initialization of Structure-Adaptive Self-Organizing Map with Genetic Algorithm)

  • 김현돈;조성배
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2000년도 제13회 춘계학술대회 및 임시총회 학술발표 논문집
    • /
    • pp.89-93
    • /
    • 2000
  • 구조 적응형 자기구성 지도는 일반적으로 자기구성 지도의 구조가 초기에 결정되어 학습이 끝날 때까지 변하지 않기 때문에 발생하는 문제를 해결하기 위해 지도의 구조를 학습 중에 적절하게 변경시킨다. 이때, 변화된 구조의 가중치를 어떻게 초기화시킬 것인가 하는 것이 중요한 문제이다. 이 논문에서는 기존의 비교사 학습방법에 LVQ 알고리즘을 이용한 교사 학습방법을 결합한 구조 적응형 자기구성 지도 모델에서 유전자 알고리즘을 이용하여 분화된 노드의 가중치를 결정하는 방법을 제안한다. 이 방법은 기존의 구조 적응형 자기구성 지도 알고리즘보다 빠르게 학습되었고, 인식률 면에서도 기존의 방법보다 높은 값을 나타내었으며, 자기구성 지도의 특성인 위상 보존도 잘 이루어졌다. 오프라인 필기 숫자 데이터로 실험한 결과, 제안한 방법이 유용함을 알 수 있었다.

  • PDF

Snakes 알고리즘을 이용한 얼굴영역 및 특징추출 (Extraction of Facial Region and features Using Snakes in Color Image)

  • 김지희;민경필;전준철
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2001년도 봄 학술발표논문집 Vol.28 No.1 (B)
    • /
    • pp.496-498
    • /
    • 2001
  • Snake 모델(active contour model)은 초기값을 설정해주면 자동으로 임의의 물체의 윤곽을 찾아내는 알고리즘으로 영상에서 특정 영역을 분할하여 할 때 많이 이용되고 있다. 본 논문에서는 칼라 영상에서 얼굴과 얼굴의 특징점을 찾는 방법으로 이 알고리즘을 적용한다. 특히, 주어진 영상의 RGB 값을 정규화(normalization) 해주는 전처리 과정을 통해 얼굴의 특징점 후보 영역을 얻어내는 초기 값을 설정해주어야 하는 과정을 생략해주고 보다 정확한 값을 얻을 수 있도록 구현한다. RGB 값을 이용한 정규화 과정을 적용한 방법과 적용하지 않은 방법을 구현한 결과를 비교해줌으로써, 정규화 과정을 거친 방법의 성능이 더 우수함을 보여준다.

  • PDF

LN2440SBC 임베디드 시스템을 위한 TFT LCD 초기화 및 그래픽스 라이브러리 함수 구현 (The Initialization of a TFT LCD and Implementation of Library Functions for an LN2440SBC Embedded System)

  • 김병국;박근덕;오삼권
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2009년도 춘계학술발표대회
    • /
    • pp.639-642
    • /
    • 2009
  • LN2440SBC 임베디드 보드는 ARM 코어 방식의 S3C2440A CPU를 가진 임베디드 컴퓨터 시스템이다. 이 시스템에 부착한 터치스크린 기능을 가진 TFT LCD 키트인 LP35의 구동을 위해서는 ARM 코어, LCD 컨트롤러, 그리고 LCD 장치와의 통신을 위한 SPI(serial peripheral interface)의 초기화와 LCD 화면에 이미지, 선, 도형 같은 것들의 출력을 가능하게 해주는 그래픽스 라이브러리 함수들이 필요하다. 본 논문은 이같은 기능들을 가지는 LP35를 위한 드라이버의 구현 방법을 기술한다. 특히, 드라이버 구동을 위한 초기화 방법과 화면 출력 기능들의 구현을 위해 필요한 픽셀 디스플레이 함수의 구현에 중점을 두어 설명한다. 또한 픽셀 디스플레이 함수를 이용한 기본 그래픽스 라이브러리 함수들에 대해 설명한다. 드라이버의 초기화를 위해서는 클럭 속도 설정, 범용 입출력 핀(GPIO)을 LCD와 SPI 용으로의 할당. SPI의 마스터/슬레이브 및 보오 레이트 설정, LCD 컨트롤러 레지스터 설정을 통한 LCD 기능 선택. 그리고 SPI를 통한 LCD 장치로의 파워 온(power on) 명령 전달 등이 수행된다.

소속 학습벡터 수를 고려한 초기 코드북 생성 알고리즘 (Initial codebook generation algorithm considering the number of member training vectors)

  • 김형철;조제황
    • 한국음향학회:학술대회논문집
    • /
    • 한국음향학회 2002년도 하계학술발표대회 논문집 제21권 1호
    • /
    • pp.259-262
    • /
    • 2002
  • 벡터양자화에서 주어진 학습벡터를 가장 잘 대표할 수 있는 코드벡터의 집합인 코드북을 구하는 것은 가장 중요한 문제이다. 이러한 코드북을 구하는 알고리즘 중에서 가장 대표적인 방법은 K-means 알고리즘으로 그 성능이 초기 코드북에 크게 의존한다는 문제점을 가지고 있어 여러 가지 초기 코드북을 설계하는 알고리즘이 제안되어 왔다. 본 논문에서는 splitting 방법을 이용한 수정된 초기 코드북 생성 알고리즘을 제안하고자 한다. 제안된 방법에서는 기존외 splitting 방법을 적용하여 초기 코드북을 생성하되, 미소분리 과정 시 학습벡터의 수렴 빈도가 가장 낮은 코드벡터를 제거하고 수렴 빈도가 가장 높은 코드벡터를 미소분리 하여 수렴 빈도가 가장 낮은 코드벡터와 대체해가며 초기 코드북을 설계 한다. 제안된 방법의 적용온 기존 방법에서 MSE(mean square error)의 감소율이 가장 작은 미소분리 과정에서 시작하여 원하는 코드북 크기를 얻을 때까지 반복한다. 제안된 방법으로 생성된 초기 코드북을 사용하여 K-means 알고리즘을 수행한 결과 기존의 splitting 방법으로 생성된 초기 코드북을 사용한 경우보다 코드북의 성능이 향상되었다.

  • PDF

최적의 TSP문제 해결을 위한 유전자 알고리즘의 새로운 집단 초기화 및 순차변환 기법 (New Population initialization and sequential transformation methods of Genetic Algorithms for solving optimal TSP problem)

  • 강래구;임희경;정채영
    • 한국정보통신학회논문지
    • /
    • 제10권3호
    • /
    • pp.622-627
    • /
    • 2006
  • TSP(Traveling Salesman Problem)는 N개의 도시가 주어질 때 어떠한 임의의 도시에서 출발하여 모든 도시를 단 한번만 방문하여 다시 출발지로 되돌아오는 여려 경로들 중 가장 짧은 거 리를 구하는 문제이다. 방문 도시수가 증가함에 따라 계산량이 기하급수적으로 증가하게 되는 문제로 인해 NP-Hard문제로 분류되며 유전자 알고리즘이 대표적으로 이용된다. TSP문제에 있어서 보다 우수한 결과를 얻기 위해 현재까지 다양한 연산자들이 개발되고 연구되어 왔다. 본 논문에서는 새로운 집단 초기화 방법과 순차변환 방법을 제안하여 기존의 방법들과 비교를 통해 성능 향상을 입증하였다.

유전자알고리즘의 혼합 초기화법을 이용한 eCRM을 위한 데이터마이닝 (Date Mining for eCRM using Mixture Initialization of Genetic Algorithm)

  • 강래구;임희경;정채영
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2006년도 추계학술발표대회
    • /
    • pp.305-308
    • /
    • 2006
  • 고객관리가 기업의 성패를 좌우하는 중요한 화두로 떠오르면서 보다 쉽고 편리하게 고객의 다양한 Pattern을 발견하고 예측하기 위해 많은 기업들이 CRM과 eCRM을 빠르게 도입하고 있고 Data Mining 기법이 대표적으로 이용되고 있다. 본 논문에서는 Data Mining을 적용함에 있어서 Genetic Algorithm의 무작위 초기화법과 유도된 초기화법을 동시에 사용하는 새로운 집단 초기화 방법을 적용하여 A할인점의 2004년도와 2005년도 우수고객을 예측하였고 실제 고객 데이터와의 비교를 통해 본 논문에서 제안한 새로운 집단 초기화 방법의 성능을 입증하였다.

  • PDF

딥러닝의 가중치 초기화와 갱신에 의한 네트워크 침입탐지의 성능 개선에 대한 접근 (Approach to Improving the Performance of Network Intrusion Detection by Initializing and Updating the Weights of Deep Learning)

  • 박성철;김준태
    • 한국시뮬레이션학회논문지
    • /
    • 제29권4호
    • /
    • pp.73-84
    • /
    • 2020
  • 인터넷이 대중화되기 시작하면서 해킹 및 시스템과 네트워크에 대한 공격이 있어 왔고, 날로 그 기법들이 진화되면서 기업 및 사회에 위험과 부담감을 주었다. 그러한 위험과 부담감을 덜기 위해서는 조기에 해킹 및 공격을 탐지하여 적절하게 대응해야 하는데, 그에 앞서 반드시 네트워크 침입탐지의 신뢰성을 높일 필요가 있다. 본 연구에서는 네트워크 침입탐지 정확도를 향상시키기 위해 가중치 초기화와 가중치 최적화를 KDD'99 데이터셋에 적용하는 연구를 하였다. 가중치 초기화는 Xavier와 He 방법처럼 가중치 학습 구조와 관련된 초기화 방법이 정확도에 영향을 준다는 것을 실험을 통해 알 수 있었다. 또한 가중치 최적화는 현재 가중치를 학습률에 반영할 수 있도록 한 RMSProp와 이전 변화를 반영한 Momentum의 장점을 결합한 Adam 알고리즘이 정확도면에서 단연 돋보임을 네트워크 침입탐지 데이터셋의 실험을 통해 확인하였다.

웨이블릿 변환을 이용한 방사 기준 함수 구조의 최적 설계 (Optimal Design of Radial Basis Function Network Us ins Wavelet Transform)

  • 박병진;김용택;김용민;전홍태
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 2002년도 추계학술대회 및 정기총회
    • /
    • pp.419-422
    • /
    • 2002
  • 본 논문에서는 신경망에 비해 보다 단순화되고 빠르게 수렴하는 특성을 보이는 방사 기준함수 구조를 초기에 설계하기 위한 초기화 방법을 제안한다. 이를 위해 웨이블릿 변환을 이용한 분석 기법을 사용하였고, 주어진 문제에 적합한 방사 기준 함수 구조를 초기에 최적 상태로 결정하였다. 시간-주파수 평면에서 지역화 특성이 대상 함수를 근사할 수 있는 특성을 지닌 방사 기준 함수를 선택, 결정하여 은닉층을 구성할 경우, 근사 능력을 지닌 초기 구조를 결정함에 있어서 장점을 지닌다. 제안된 구조는 다층 전방향 신경망 또는 정규 배열된 방사 기준함수 구조에 비해 주어진 문제에 대해 좋은 성능을 보인다.

임베디드 리눅스 기반 단말기의 빠른 부팅 개선 방법 (Fast booting solution with embedded linux-based on the smart devices)

  • 이광로;배병민;박호준
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2012년도 춘계학술대회
    • /
    • pp.387-390
    • /
    • 2012
  • 본 논문에서는 임베디드 리눅스 기반 단말기의 빠른 부팅 개선을 위해 부팅 과정을 부트로더, 커널, 파일 시스템, 초기화 스크립트, 공유 라이브러리, 응용 프로그램 등 6가지 단계로 나누었다. 빠른 부팅 개선을 위해 전원인가 시 최초로 실행되는 부트로더 단계와 초기화 스크립트 단계에 적용했다. 부트로더 단계에서 입력 대기 시간 제거, 불필요한 초기화 루틴제거, 커널 이미지 비압축 로드, 최적화된 복사 루틴 사용 등을 적용하여 부팅 개선을 했다. 또한 초기화 스크립트 단계에서 이진화 기반 스크립트 대체 기술 사용, init 프로세스 경량화 등을 적용하여 부팅 개선을 했다.

  • PDF