• Title/Summary/Keyword: 초기재령 압축강도

Search Result 187, Processing Time 0.027 seconds

The Buildability and Strength Properties of 3D Printed Concrete in the Air and Underwater Environment (수중과 기중환경에서 출력된 3D 프린팅 콘크리트의 적층성능 및 강도 특성 분석)

  • Eun-A Seo;Ho-Jae Lee
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.28 no.2
    • /
    • pp.35-42
    • /
    • 2024
  • This study evaluated the buildability and mechanical properties of 3DP concrete printed in air and underwater environments. Buildability was evaluated by green strength test on fresh concrete and height and deflection immediately and 1 hour after printing. The green compressive strength of the concrete was 5.0 kPa after 30 minutes and 7.9 kPa after 3 hours, an increase of 1.6 times the initial strength. The total height of the laminated parts met the design height regardless of the printing environment. The amount of deflection in air and under water 1 hour after printing was 1 mm and 0.2 mm, respectively, indicating a small amount of deflection under water. The apparent density of the sample appeared in the order of A-M > A-P > UW-P. This is believed to be because a large amount of air is mixed into the concrete during the printing process, and water infiltrates during the underwater printing process. The compressive strength ratio of UW-P/A-P was 0.86 at 1 day, but the compressive strength of the underwater printed concrete was high from 7 days.

Flowability and Strength of Cement Composites with Different Dosages of Multi-Walled CNTs (다중벽 탄소나노튜브의 혼입량에 따른 시멘트 복합체의 유동성 및 강도 변화)

  • Ha, Sung-Jin;Kang, Su-Tae
    • Journal of the Korea Concrete Institute
    • /
    • v.28 no.1
    • /
    • pp.67-74
    • /
    • 2016
  • With several different dosages of multi-walled CNTs which was 0.1, 0.3, and 0.5% of the weight of binder, the fluidity in fresh CNT cement composites, as well as the strength and strength development with age of the hardened composites were investigated in this experimental study. The experimental results from flow test indicated that the increase in the dosage of CNTs badly impacted on the workability of fresh composites, and the results from rheological measurements presented the decrease in plastic viscosity and the increase in yield stress according to the amount of CNTs. In addition, the thixotrophy in the flow curve obtained from the rheology test was observed more noticeably in the composites with higher dosage of CNTs. With the experiments on the strength properties, the improvement of both compressive and tensile strengths with the increase of CNTs dosage could be obtained. Moreover, early strength development by adding CNTs was found when it was compared with plain cementious matrix without CNT.

Evaluation of Workability and Strength in Concrete with Cellulose Fibers (셀룰로오즈 섬유 함유 콘크리트의 작업 성능 및 강도 평가)

  • Ryu, Hwa-Sung;Lee, Sang-Seok;Kwon, Seung-Jun
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.8 no.2
    • /
    • pp.198-203
    • /
    • 2020
  • Cracking due to material behavior like drying shrinkage easily occurs since tensile strength in concrete is very low at initial curing stage. In this paper, workability such as air content and slump was evaluated on CFC(Cellulose Fiber Concrete) with 0.0 ~ 2.0% of fiber addition, and the tests for tensile/compressive strength were performed. With increasing addition ratio of fiber, air content and slump kept similar level to 1.0kg/㎥ of addition ratio, and this trend was effective to 2 hours after mixing. Strength was enhanced with increasing addition ratio, which showed 7.0 ~ 9.0% for compressive strength and 7.0 ~ 22.0% for tensile strength, respectively. The tensile strength increased relatively more, which show the addition of cellulose fiber was very effective to crack resistance. The workability in CFC can be guaranteed for 2 hours in the following conditions like 2 minutes of mixing period and 1.0kg/㎥ of addition ratio of fiber.

Suggestion for Non-Destructive Testing Equation to Estimate Compressive Strength of Early Strength Concrete (조기강도 콘크리트의 압축강도 추정을 위한 비파괴검사 실험식의 제안)

  • Lee, Tae-Gyu;Kang, Yeon-Woo;Choi, Hyeong-Gil;Choe, Gyeong-Choel;Kim, Gyu-Yong
    • Journal of the Korea Institute of Building Construction
    • /
    • v.16 no.3
    • /
    • pp.229-235
    • /
    • 2016
  • In construction field, it used various technique for concrete formwork. Part of them, non-destructive test has been conducted to estimate a compressive strength of concrete easily such as rebound method and ultrasonic pulse velocity method etc. Former research has recommend proposed equation based on experimental data to investigate strength of concrete but it was sometimes deferent actual value of that from in field because of the few of data in case of early strength concrete. In this study, an experiment was conducted to analyze strength properties for early strength concrete using cylinder mold and $1,000mm{\times}1,000mm{\times}200mm$ rectangular specimen. And compressive strength of concrete was tested by non-destructive test, and calculated by the equation proposed former research. As a result, the non-destructive test results showed approximately 70 percent of the failure test value for all conditions, and worse reliability was obtained for high strength concrete samples when the ultrasonic pulse velocity method was used. Based on the scope of this study, the experimental equation for estimating compressive strength of early strength concrete from 24MPa to 60MPa was proposed.

A Study on Early Age Properties of Alkali Activated Slag Mortar According to Water/Binder Ratio (물-결합재비에 따른 알칼리 활성 슬래그 모르타르의 초기 재령 특성에 관한 연구)

  • Oh, Sang-Hyuk;Kim, Dae-Wang;Lee, Kwang-Myong
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.7 no.2
    • /
    • pp.63-69
    • /
    • 2012
  • Recently, the cement industries brought very severe environment problems such as resource depletion and global warming with massive carbon dioxide during its production. The number of cases using industrial by-products such as the ground granulated blast furnace slag (GGBFS) in concrete mixtures is increasing to resolve the environmental issue. GGBFS is mainly used in the range between 20 to 50% to replace cement, but nowadays lots of researches are carried out to develop the alkali-activated slag (AAS) concrete with no cement. In this study, the early age properties of alkali activated slag (AAS) mortar are investigated to obtain the fundamental data for AAS concrete application to structural members. The experimental variables were the water-binder ratios of 0.3, 0.4, and 0.5 and NaOH as the alkali activator of 4%, 8%, and 12% by the mass of GGBFS, and compressive strength, flow, setting time, and ultrasonic pulse velocity of AAS mortars were measured and analyzed. It is found from the test results that as the normal concrete the lower W/B, the higher compressive strength. However, superplasticizer has to be used for producing high strength AAS concrete because the workability of AAS mortar are significantly lowered.

  • PDF

Physical Properties of Cement Blended Finex-Slag Powder (파이넥스 슬래그 미분말을 혼합한 시멘트의 물성)

  • Lee, Keun-Jae;Byun, Seung-Ho;Choi, Hyun-Kook;Song, Jong-Taek
    • Journal of the Korea Concrete Institute
    • /
    • v.22 no.3
    • /
    • pp.375-380
    • /
    • 2010
  • In this study, physical properties of cement blended with Finex-slag powder(OPC-FS) were investigated by the measurement of flowability, compressive strength, hydration heat, and $Ca(OH)_2$ content. In addition, those properties of the cement blended with blast furnace slag(OPC-BFS) were also measured for comparison. It was found that OPC-FS and OPC-BFS showed similar trend in the rheological properties. In the blended cement pastes with the $4,000\;cm^2/g$ Blaine value the flowability of OPCFS was better than that of OPC-BFS. The initial 3 day mortar compressive strength and the hydration heat of paste of OPC-FS was a bit higher, compared with OPC-BFS. Accordingly $Ca(OH)_2$ produced in the cement hydration was decreased very rapidly.

Fundamental Tests on Compressive Strength Development and Thermal Conductivity of Cement Pastes Including Fumed Silica (흄드 실리카 첨가에 따른 시멘트 페이스트의 강도발현 및 열전도 특성에 대한 기초 연구)

  • Park, Jong-Beom;Yoon, Hyun-Sub;Yang, Keun-Hyeok
    • Journal of the Korea Institute of Building Construction
    • /
    • v.18 no.5
    • /
    • pp.413-418
    • /
    • 2018
  • This fundamental study is to examine the significance and limitation of the fumed silica addition to enhance the early compressive strength gain and thermal conduction resistance of cement pastes. The fumed silica content varied from 0% to 1.6% of the cement content by wt% at an interval of 0.4%. Test results showed that the addition of fumed silica is favorable to enhancing the early strength gain of the cement pastes, indicating that 1-day compressive strength corresponded to 45% of the 28-day strength. This high-early strength gain rate is comparable to the trend commonly observed in steam-cured cement concrete. However, the addition of fumed silica little influenced the thermal conduction resistance of cement pastes.

Analysis of the Characteristics of Manufactured Concrete, according to the Type of Admixture used when Remixing and Placing it (혼화제 종류별로 제조된 콘크리트의 재 혼합 타설시 특성 분석)

  • Ryu, Hyun-Gi;Shin, Sang-Yong
    • Journal of the Korea Institute of Building Construction
    • /
    • v.10 no.5
    • /
    • pp.95-102
    • /
    • 2010
  • In recent years, the demand for the development of high quality and cost effective materials, as well as the competition to ensure a diverse and sufficient amount of ready-mixed concrete, has been increasing rapidly. In this experiment, concretes made with different admixtures are blended with each other in different combinations and ratios, in order to identify potential problems. The first test was a slump level test, in which all of the concretes met the required numbers, as they also did in the test for air content. Plain organic acid concrete scored the highest in bleeding amount, but organic acid mix in general showed a similar outcome. In the early measurement of compressive strength, plain naphthalene concrete was the strongest. Of the blends, the 5:5 mix of organic acid and naphthalene was the strongest. In the standard measurement, the 5:5 mix of naphthalene and lignin was the strongest. Tensile strength tests revealed similar results. Length change rate proved to be greater in blended concrete than in plain concrete, and dry shrinkage rate was highest in the 7:3 ratio blends. Through SEM photo analysis, it was confirmed that the 7:3 ratio blends contained more micro-voids. In conclusion, with the exception of a specific few combinations, it was found that the blending of different types of concrete is undesirable due to the delayed coagulation time as well as the early decrease in strength.

Study on preparation of blast furnace slag mortars using alkali activation (알칼리 활성화에 의한 고로슬래그 경화체의 제조 연구)

  • Shin, Jae Ran;Lim, Yun Hui;Lee, Ju Yeol;Park, Byung Hyun
    • Journal of the Korean Applied Science and Technology
    • /
    • v.32 no.2
    • /
    • pp.188-193
    • /
    • 2015
  • Blast Furnace Slag is good for enhancing the qualities of concrete such as reducing hydration heat increasing fluidity, long-term strength and durability, but it has some problems: construction time is increased or the rotation rate of form is decreased due to low development of early strength. In this study, an aqueous alkali solution for alkali activated reaction was obtained by the electrolysis using concentrated water discharged from seawater desalination process. Prepared aqueous alkali solution was applied to produce mortars using blast furnace slag. The results can be summarized as follows : For the mortar, compressive strength was decreased below 2% of NaOH and increased below 6% of NaOH. And compressive strength was increased gradually with increasing NaOCl contents. However, NaCl contents of mortars caused a decrease of 28days strength above early strength.

Influence of Cement and Mixing time Factor on the Bleeding of Concrete (콘크리트의 블리딩에 미치는 시멘트 및 믹싱시간의 영향)

  • Lee, Won-Am;Um, Tai-Sun;Lee, Jong-Ryul
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.593-596
    • /
    • 2008
  • The bleeding of concrete is defined as a kind of separation of materials. The durability of concrete, as well as the quality caused by the bleeding. Therefore, This study is intended to find influence of cement and mixing time factor on the bleeding of concrete. We want to know two factors that determine the change, to provide it to our customers. According to the results, The bleeding ratio increase by the increase of mixing time factor. At the 90 second of mixing time, the amount of bleeding differ greatly from cement properties. This paper presents an experimental study on bleeding ratio, slump and compressive strength properties with three days. In addition, the mixing time is inversely related slump loss ratio, the initial value of the compressive strength is only affected by the mixing time. As a result, the bleeding of concrete was obtained that their characteristics depends on the cement and mixing time factor, also in the future, to derive optimum mixing time for a variety of review is necessary.

  • PDF