• Title/Summary/Keyword: 초기자세 추정 기법

Search Result 8, Processing Time 0.018 seconds

Map Creation Algorithm and Initial Attitude Estimation Method for Optical Head Tracker System (광학방식 헤드 트랙커를 위한 맵 생성 알고리즘과 초기자세 추정기법)

  • Lee, Young-Jun;Park, Chan-Gook
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.36 no.7
    • /
    • pp.680-687
    • /
    • 2008
  • This paper presents map creation algorithm and initial attitude estimation method for the proposed optical head tracker system. The optical head tracker system consists of the IR stereo cameras and infrared LEDs as features on the helmet. In order for the stereo camera to track the luminous LEDs, it must take in to account the light radiation from the LEDs to determine the position of the center points. The proposed map creation algorithm makes map data about the position of features center points on the helmet frame. Also, initial attitude estimation method is proposed to estimate the initial attitude and position of a pilot head from the camera frame by the use of the feature pattern on the helmet. Therefore, the head motion can be expressed with respect to the body frame of a flight.

편대비행 위성의 자세 동기화를 위한 SDRE 추적 제어기와 Hardware-In-the-Loop 시뮬레이션

  • Jeong, Jun-O;Park, Sang-Yeong
    • Bulletin of the Korean Space Science Society
    • /
    • 2010.04a
    • /
    • pp.31.2-31.2
    • /
    • 2010
  • 편대비행 위성이 공동의 임무를 수행하기 위해서는 편대를 이루는 위성의 각기 다른 초기 오차와 다양한 외란 환경에서도 자세 동기화를 이룰 수 있는 기법이 필요하다. 이 연구에서는 편대비행위성의 자세 동기화를 위하여 비선형 시스템에 대한 준최적 제어기법인 SDRE(State-Dependent Riccati Equation)에 기반한 추적 제어기가 사용되었다. 반작용 휠이 포함된 위성의 자세 동역학이 SDRE 추적 제어기를 구성하는데 이용된다. 이를 Leader/Follower 편대비행 시스템에 적용하며, 기준 자세를 추적하는 Leader 위성의 자세를 Follower 위성이 추적하여 자세 동기화를 이룰 수 있다. MATLAB과 SIMULINK를 이용한 수치해석적 시뮬레이션으로 추적 제어기의 성능을 검증하였으며, 이에 대한 실시간 HIL(Hardware-In-the-Loop) 시뮬레이션이 수행되었다. 무중력 환경을 모사하는 에어베어링시스템과 세 개의 반작용 휠을 장착한 자세제어 HILS(Hardware-In-the-Loop Simulator)는 PC104 타입의 임베디드 컴퓨터에서 SIMULINK의 xPC Target을 이용한 실시간 시뮬레이션 환경을 제공하며, 이에 적용되는 SDRE 추적 제어기는 이산화되어 설계되었다. 또한 SDRE 추적 제어기에 대한 안정성을 보장하는 영역이 추정되어 위 추적 제어기가 위성 편대비행에 적합한 자세 동기화 기법임을 보였다.

  • PDF

Ship Motion Estimation and Prediction for Ship-borne Weapon Systems (함상발사시스템을 위한 함운동 추정 및 예측기법)

  • Whang, Ick-Ho;Ra, Won-Sang
    • Proceedings of the KIEE Conference
    • /
    • 2006.07d
    • /
    • pp.1797-1798
    • /
    • 2006
  • 함상에서 발사되는 유도탄 등의 무기체제는 함정의 운동에 따라 초기 발사 자세 및 그 변화율이 변화하므로 함정의 운동을 고려하여 발사시점을 결정하여야 한다. 함상 발사대에 장착된 유도탄은 자체 센서에 의하여 함정의 자세 및 자세변화율을 측정하며 이렇게 측정된 함정 운동정보를 적절히 필터링하고 유도탄 발사 시퀀스 지연시간만큼 예측하여 발사시점을 결정한다. 본 논문에서는 함정운동을 모델링하고 이 모델에 근거하여 함상발사 유도탄의 초기 발사 시점 결정에 필요한 함운동을 추정 및 예측하는 필터를 제안하고 그 성능을 검토하였다. 시험결과 제안된 방법을 이용하여 우수한 성능으로 함운동을 예측할 수 있었다.

  • PDF

Sun Sensor Aided Multiposition Alignment of Lunar Exploration Rover (달 탐사 로버의 태양 센서 보조 다중위치 정렬)

  • Cha, Jaehyuck;Heo, Sejong;Park, Chan-Gook
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.45 no.10
    • /
    • pp.836-843
    • /
    • 2017
  • In lunar exploration, the necessity of utilizing rover is verified by the examples of the Soviet Union and China and the similar Mars missions of the United States. In order to achieve the successful management of a lunar rover, a high precision navigation technique is required, and accordingly, high precision initial alignment is essential. Even though it is general to perform initial alignment in a steady state, a multiposition alignment technique is applied when high performance is needed. On the lunar surface, however, the performance of initial alignment decreases from that on Earth, and it cannot be improved by applying multiposition alignment method owing to certain constraints of lunar environment. In this paper, a sun sensor aided multiposition alignment technique is proposed. The measurement model for a sun vector is established, and its observability analysis is performed. The performance of the proposed algorithm is verified through computer simulations, and the results show the estimation performance is improved dramatically.

A Study on the Control of Hydrodynamic forces for Wave Energy Conversion Device Operating in Constantly Varying Ocean Conditions (파력 발전기에 미치는 유체력의 제어에 관한 연구)

  • 김성근;박명규
    • Journal of the Korean Institute of Navigation
    • /
    • v.14 no.4
    • /
    • pp.41-52
    • /
    • 1990
  • Due to the constantly varying sea-state with which any wave energy conversion device must contend in order to extract energy efficiently , the ability to control the device's position relative to the incident waves is critical in achieving the creation of a truly functional and economical wave energy device. In this paper, the authors will propose methodology based on the theory of a variable structure system to utilize a three dimensional source distribution as a model to estimate anticipated surge, sway and yaw of a wave energy conversion device relative to varying angles and characteristics of incident waves and there from derive a feedback to a sliding mode controller which would reposition the device so as to maximize its ability to extract energy from waves in constantly varying ocean conditions.

  • PDF

Error Correction Scheme in Location-based AR System Using Smartphone (스마트폰을 이용한 위치정보기반 AR 시스템에서의 부정합 현상 최소화를 위한 기법)

  • Lee, Ju-Yong;Kwon, Jun-Sik
    • Journal of Digital Contents Society
    • /
    • v.16 no.2
    • /
    • pp.179-187
    • /
    • 2015
  • Spread of smartphone creates various contents. Among many contents, AR application using Location Based Service(LBS) is needed widely. In this paper, we propose error correction algorithm for location-based Augmented Reality(AR) system using computer vision technology in android environment. This method that detects the early features with SURF(Speeded Up Robust Features) algorithm to minimize the mismatch and to reduce the operations, and tracks the detected, and applies it in mobile environment. We use the GPS data to retrieve the location information, and use the gyro sensor and G-sensor to get the pose estimation and direction information. However, the cumulative errors of location information cause the mismatch that and an object is not fixed, and we can not accept it the complete AR technology. Because AR needs many operations, implementation in mobile environment has many difficulties. The proposed approach minimizes the performance degradation in mobile environments, and are relatively simple to implement, and a variety of existing systems can be useful in a mobile environment.

Robust Eye Localization using Multi-Scale Gabor Feature Vectors (다중 해상도 가버 특징 벡터를 이용한 강인한 눈 검출)

  • Kim, Sang-Hoon;Jung, Sou-Hwan;Cho, Seong-Won;Chung, Sun-Tae
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.45 no.1
    • /
    • pp.25-36
    • /
    • 2008
  • Eye localization means localization of the center of the pupils, and is necessary for face recognition and related applications. Most of eye localization methods reported so far still need to be improved about robustness as well as precision for successful applications. In this paper, we propose a robust eye localization method using multi-scale Gabor feature vectors without big computational burden. The eye localization method using Gabor feature vectors is already employed in fuck as EBGM, but the method employed in EBGM is known not to be robust with respect to initial values, illumination, and pose, and may need extensive search range for achieving the required performance, which may cause big computational burden. The proposed method utilizes multi-scale approach. The proposed method first tries to localize eyes in the lower resolution face image by utilizing Gabor Jet similarity between Gabor feature vector at an estimated initial eye coordinates and the Gabor feature vectors in the eye model of the corresponding scale. Then the method localizes eyes in the next scale resolution face image in the same way but with initial eye points estimated from the eye coordinates localized in the lower resolution images. After repeating this process in the same way recursively, the proposed method funally localizes eyes in the original resolution face image. Also, the proposed method provides an effective illumination normalization to make the proposed multi-scale approach more robust to illumination, and additionally applies the illumination normalization technique in the preprocessing stage of the multi-scale approach so that the proposed method enhances the eye detection success rate. Experiment results verify that the proposed eye localization method improves the precision rate without causing big computational overhead compared to other eye localization methods reported in the previous researches and is robust to the variation of post: and illumination.

Measurement Delay Error Compensation for GPS/INS Integrated System (GPS/INS 통합시스템의 측정치 시간지연오차 보상)

  • Lyou Joon;Lim You-Chol
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.41 no.1
    • /
    • pp.1-8
    • /
    • 2004
  • The INS(Inertial Navigation System) provides high rate position, velocity and attitude data with good short-term stability while the GPS(Global Position System) provides position and velocity data with long-term stability. By integrating the INS with GPS, a navigation system can be achieved to Provide highly accurate navigation Performance. For the best performance, time synchronization of GPS and INS data is very important in GPS/INS integrated system But, it is impossible to synchronize them exactly due to the communication and computation time-delay. In this paper, to reduce the error caused by the measurement time-delay in GPS/INS integrated systems, error compensation methods using separate bias Kalman filter are suggested for both the loosely-coupled and the tightly-coupled GPS/INS integration systems. Linearized error models for the position and velocity matching GPS/INS integrated systems are Int derived by linearizing with respect to its time-delay and augmenting the delay-state into the conventional state equations for each case. And then separate bias Kalman Inter is introduced to estimate the time-delay during only initial navigation stage. The simulation results show that the present method is effective enough resulting in considerably less position error.