• Title/Summary/Keyword: 초기변형

Search Result 1,078, Processing Time 0.029 seconds

Performance Analysis of modified PRMA: PRHMA(Packet Reservation Hold Multiple Access) (변형된 PRMA 방식인 PRHMA의 성능분석)

  • Kim Hwan Ui;Kim Doug Nyun
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.1 no.2
    • /
    • pp.122-130
    • /
    • 2000
  • This paper mainly deals with the modified version of conventional PRMA(Packet Reservation Multiple Access). In the existing PRMA schemes, the occupied slot in the initial access state is not allowed to be reserved in the silent period and retrial of gaining the slot access has to pay additional packet dropping. Whereas in the modified model, we propose to utilize a control minislot that maintains slot reservation and this prevents additional packet drop occurrence since initial access, and this slightly improves the system performance.

  • PDF

In-Situ Stress Measurements for Excavation of Deep Cavern (대심도 지하 공간 굴착을 위한 초기지압 측정 결과)

  • Lee, Hong-Gyu
    • Tunnel and Underground Space
    • /
    • v.19 no.6
    • /
    • pp.567-582
    • /
    • 2009
  • The world's largest nucleon decay experiment facility is constructed at a depth of approximately 1,000meters, in the Kamioka mine, Japan. Because of the character as a large cavern in deep underground, in-situ stress measurements were conducted to provide basic information for design of the cavern. Three overcoring methods were used: 8-element embedding gauges developed by Japanese Central Research Institute of Electric Power Industry, hemispherical ended borehole technique with eight strain cross-gauges, and Hollow Inclusion Cell with 12 strain gauges. The principle stresses were not perfectly similar in each measurement. The average values of the 6 stress element were used to provide the direction and the magnitude of three principle stress.

Optimization of Product's Tipping Position in Designing Die Face for Manufacturing Automobile Outer Panels (차체 외판의 제작을 위한 다이페이스 설계에 있어서 제품 성형방향의 최적화)

  • 박종천;조경호;이건우
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.6
    • /
    • pp.1389-1403
    • /
    • 1993
  • A procedure has be developed to optimize the product's tipping position in designing a die face for manufacturing automobile outer panels. Two design requirements are considered in optimizing the tipping position. One is to satisfy that all the points on the product should have a uniform distribution of drawing depths. The other is to guarantee that the user-specified area on the product should first contact with the binder wrap. The problem to satisfy the design requirements described above is analogous to the flatness calculation problem in the area of metrology if some constraints can be imposed. Thus the problem can be solved by the simulated annealing method, which is one of the optimization methods. The developed procedure was tested with the real die face design problem and the usefulness was verified by the diagram of the drawing depth.

Suction Stress and Unconfined Compressive Strength of Compacted Unsaturated Silty Sand (다짐된 불포화 실트질 모래의 흡수응력과 일축압축강도)

  • Park, Seong-Wan;Kwon, Hong-Ki
    • Journal of the Korean Geotechnical Society
    • /
    • v.27 no.8
    • /
    • pp.31-37
    • /
    • 2011
  • In order to evaluate the effect of matric suction on the strength and deformation characteristics, the unsaturated unconfined compression test is performed for the statical1y compacted silty sand. Specimens used were made under conditions with various initial degrees of saturation. The initial matric suction, matric suction at the peak shear strength and the volumetric deformation during the shear process were measured. From these results, it was found that the initial degree of saturation exerts the influence on the behaviors of suction, peak shear strength and the volumetric deformation. Furthermore, the suction stress($P_s$) which means the apparent cohesion due to matric suction in the unsaturated shear strength could be derived.

Rheological Characteristics of Polyaniline Suspension as an Electrorheological Fluid (전기유변유체로서의 폴리아닐린 현탁액의 유변학적 특성)

  • 권무현
    • The Korean Journal of Rheology
    • /
    • v.7 no.3
    • /
    • pp.203-210
    • /
    • 1995
  • 전기장 하에서 폴리아닐린/미네랄 오일 현탁액의 유변학적 특성에 관한 실험적인 연 구를 큐엣 셀 형태의 레오미터를 사용하여수행하였다. 폴리아닐린 현탁액은 전기장을 가해 줄 때 점도가 크게 상승하는 현상을 보였고 부피분율과 전기장의 3/2승에 비례하는 동적 항 복응력을 나타내었다. 작은 변형 진폭의 동적 상태 실험을 통하여 저장계수와 손실계수를 변형진폭, 변형의 구동 주파수 및 전기장의 함수로 나타내었다. 저장계수는 전기장을 증가시 킬 때 증가하나 손실계수(5wt%)는 약한 전기장 의존성을 보였다. 낮은 응력을 가해줄때의 크립과 회복곡선은 초기의 순간적인 변형 증가와 지연되는 변형 그리고 회복 불가능한 영구 적 변형으로 구성되어진다. 탄성 한계 항복응력은 전기장의 세기가 증가함에 따라 증가하였 다. 매우 작은 변형에서는 응력과 변형사이의 선형적 관계를 보여 고체와 유사한 거동을 나 타내었다.

  • PDF

The Effect of Stress on Borehole Deformability (응력이 공내 변형률에 미치는 영향)

  • 윤건신
    • Geotechnical Engineering
    • /
    • v.14 no.5
    • /
    • pp.219-234
    • /
    • 1998
  • Modulus measurements in vertical boreholes under simulated horizontal in-situ stress conditions were performed on laboratory rock specimens. The experimental program was focused on the examination of modulus change with the variation of the orientation, magnitude and ratios of horizontal biaxial stresses. The experiment results show that the modulus increases when the magnitude of the horizontal stresses increases. The modulus measured in the minimum principal direction increased when the ratio between the horizontal principal stresses increased, while the modulus measured in the maximum principal direction decreased when the ratio of the horizontal principal stresses increased. These were caused by the tangential stresses that vary depending upon the magnitude of horizontal stresses, the applied pressure and the orientation of measurement. Also, the measured moduli were determined under tensile stress, compressive stress, or both stresses. Thus, the stress effect on deformation modulus should be considered, not only for the interpretation of the results of borehole deformability measurement, but also for the design of underground gas storage and pressure tunnel, and for the interpretation of tunnel monitoring.

  • PDF

Electrode Fabrication of MWCNT-PDMS Strain Sensors by Wet-etching (습식 식각을 이용한 MWCNT-PMDS 변형율 센서 전극 생성에 관한 연구)

  • Jung, La-Hee;Hwang, Hui-Yun
    • Composites Research
    • /
    • v.34 no.6
    • /
    • pp.387-393
    • /
    • 2021
  • This paper investigated the electrical properties of multiwall carbon nanotube reinforced polydimethylsiloxane (CNT-PDMS) strain sensors with copper electrodes on the wet-etched surface. MWCNT-PDMS strain sensors were fabricated according to the wt% of MWCNT. Surfaces on the electrode area were wet-etched with various etching duration and silver epoxy adhesives were spread on the wet-etched surface. Finally, we attached the copper electrodes to the MWCNT-PMDS strain sensors. We checked the electric conductivities by the two-probe method and sensing characteristics under the cyclic loading. We observed the electric conductivity of MWCNT-PDMS strain sensors increased sharply and the scattering of the measured data decreased when the surface of the electrode area was wet-etched. Initial resistances of MWCNT-PDMS strain sensors were inversely proportion to wt% of MWCNT and the etching duration. However, the resistance changing rates under 30% strain increased as wt% of MWCNT and the etching duration increased. Decreasing rate of the electric resistance change after 100 repetitions was smaller when wt% of MWCNT was larger and the etching duration was short. This was due to the low initial resistance of the MWCNT-PMDS strain sensors by the wet-etching.

Ultimate Axial Strength of Longitudinally Stiffened Cylindrical Steel Shell for Wind Turbine Tower (풍력발전 타워용 종방향 보강 원형단면 강재 쉘의 극한압축강도)

  • Ahn, Joon Tae;Shin, Dong Ku
    • Journal of Korean Society of Steel Construction
    • /
    • v.29 no.2
    • /
    • pp.123-134
    • /
    • 2017
  • Ultimate axial strength of longitudinally stiffened cylindrical steel shells for wind turbine tower was investigated by applying the geometrically and materially nonlinear finite element method. The effects of radius to thickness ratio of shell, shape and amplitude of initial imperfections, area ratio between effective shell and stiffener, and stiffener spacing on the ultimate axial strength of cylindrical shells were analyzed. The ultimate axial strengths of stiffened cylindrical shells by FEA were compared with design buckling strengths specified in DNV-RP-C202. The shell buckling modes obtained from a linear elastic bifurcation FE analysis as well as the weld depression during fabrication specified in Eurocode 3 were introduced in the nonlinear FE analysis as initial geometric imperfections. The radius to thickness ratio of cylindrical shell models was selected to be in the range of 50 to 200. The longitudinal stiffeners were designed according to DNV-RP-C202 to prevent the lateral torsional buckling and local buckling of stiffeners.

Ultimate Flexural Strength of Cylindrical Steel Shell for Wind Tower (풍력발전 타워용 원형단면 강재 쉘의 극한휨강도)

  • Ahn, Joon Tae;Shin, Dong Ku
    • Journal of Korean Society of Steel Construction
    • /
    • v.27 no.1
    • /
    • pp.109-118
    • /
    • 2015
  • Ultimate flexural buckling strength of cylindrical steel shells for the wind turbine tower structure was investigated by applying the geometrically and materially nonlinear finite element method. The effects of initial imperfection, radius to thickness ratio, and type of steel on the ultimate flexural strength of cylindrical shell were analyzed. The flexural strengths of cylindrical shells obtained by FEA were compared with design flexural strengths specified in Eurocode 3 and AISI. The shell buckling modes recommended in DNV-RP-C202 and the out-of-roundness tolerance and welding induced imperfections specified in Eurocode 3 were used in the nonlinear FE analysis as initial geometrical imperfections. The radius to thickness ratios of cylindrical shell in the range of 60 to 210 were considered and shells are assumed to be made of SM520 or HSB800 steel.

Identification of Compliance Function for Early-Age Concrete Based on Measured Strain & Thermal Stress Histories (변형률 및 열응력 이력 계측을 통한 초기재령 콘크리트의 컴플라이언스 함수 추정)

  • Oh, Byung-Hwan;Shin, Joon-Ho;Choi, Seong-Cheol;Cha, Soo-Won
    • Journal of the Korea Concrete Institute
    • /
    • v.15 no.5
    • /
    • pp.662-669
    • /
    • 2003
  • Recently, the serviceability and durability of concrete structures under thermal load have received great attention. The thermal stress and clacking behavior of concrete at early ages are one of the important factors that affect such serviceability and durability of concrete structures. Nevertheless, most studies on the behavior of early-age concrete have been confined to the temperature and strain development itself in the laboratory. The desirable efforts to explore the material properties of concrete at early-ages have not been made extensively so far. The purpose of the present study is, therefore, to identify some important material properties that affect the stress behavior of concrete at early-ages. To this end, full-scale concrete base-restrained wall members have been fabricated, and many sensors including thermocouples, strain meters and stress meters were installed inside of the wall members. These sensors were to measure the development of temperatures, strains and stresses at several location in concrete walls during the hardening and curing phase of early-age concrete. By using these measured values of strain and stress, the compliance function at early-age was identified. The basic form of compliance function derived in this study follows the double-power law. However, the results of present study indicate that the values of existing compliance functions are much lower than actual values, especially at very early-ages. It can be seen that the prediction of stresses of early-age concrete based on the proposed compliance function agrees very well with test data. The present study allows more realistic evaluation of varying stresses in early-age concrete under thermal load.