• Title/Summary/Keyword: 초기변형율

Search Result 130, Processing Time 0.022 seconds

Electrode Fabrication of MWCNT-PDMS Strain Sensors by Wet-etching (습식 식각을 이용한 MWCNT-PMDS 변형율 센서 전극 생성에 관한 연구)

  • Jung, La-Hee;Hwang, Hui-Yun
    • Composites Research
    • /
    • v.34 no.6
    • /
    • pp.387-393
    • /
    • 2021
  • This paper investigated the electrical properties of multiwall carbon nanotube reinforced polydimethylsiloxane (CNT-PDMS) strain sensors with copper electrodes on the wet-etched surface. MWCNT-PDMS strain sensors were fabricated according to the wt% of MWCNT. Surfaces on the electrode area were wet-etched with various etching duration and silver epoxy adhesives were spread on the wet-etched surface. Finally, we attached the copper electrodes to the MWCNT-PMDS strain sensors. We checked the electric conductivities by the two-probe method and sensing characteristics under the cyclic loading. We observed the electric conductivity of MWCNT-PDMS strain sensors increased sharply and the scattering of the measured data decreased when the surface of the electrode area was wet-etched. Initial resistances of MWCNT-PDMS strain sensors were inversely proportion to wt% of MWCNT and the etching duration. However, the resistance changing rates under 30% strain increased as wt% of MWCNT and the etching duration increased. Decreasing rate of the electric resistance change after 100 repetitions was smaller when wt% of MWCNT was larger and the etching duration was short. This was due to the low initial resistance of the MWCNT-PMDS strain sensors by the wet-etching.

A Study on the Effect of Initial Strain on Cyclic Creep Properties of Steam Turbine Rotor Steel (화력 발전용 로터강의 초기 변형율이 CYCLIC 크리프 특성에 미치는 영향에 관한 연구)

  • 오세규;정순억;한상덕
    • Journal of Ocean Engineering and Technology
    • /
    • v.6 no.1
    • /
    • pp.78-86
    • /
    • 1992
  • The creep behaviors of 1%Cr-Mo-V and 12%Cr steam turbine rotor steels under static or cyclic load were examined at 600 and $700^{\circ}C$. The relationship between these two kinds of phenomena was studied and the experimental results were summarized as follows: 1) It is confirmed that the cyclic creep strain dependent on time is more available for creep, behavior analysis according to frequency change than that dependent on number of cycles, and the static creep, the special case of cyclic creep with stress ratio of 1 can be also more effectively analyzed by time-dependence. 2) The steady cyclic creep rate vs. the steady static creep rate, increases according to the increase of stress ratio, and this phenomena may occur on occasion of the decrease of the internal stress. 3) The initial strain affects on all the creep properties of the transient region, the steady state region and the rupture time in cyclic creep as well as static creep, and the quantitative relationships among them exist.

  • PDF

Microcrack Development in the Pocheon Granite due to Cyclic Loading (피로하중에 의한 포천화강암의 미세균열 발달특성)

  • 장보안;김영화;김재동;이찬구
    • The Journal of Engineering Geology
    • /
    • v.8 no.3
    • /
    • pp.275-284
    • /
    • 1998
  • Deformation behavior and microcrack development due to uniaxial compressive cyclic loading in the Pocheon granite were investigated using the ultrasonic velocity measurements and the differential strain analysis(DSA). Most microcracks were developed along the direction parallel to the loading axis. Microcracks developed at the early stage of cyclic loading were formed by propagation of pre-existing cracks. Ultrasonic velocity measurement, DSA and measurement of permanent deformation are good tools to represent microcrack development in rock. Since results from each method are slightly different, microcrack development should be interpreted from all three methods. The magnitude of microcracks developed at the early stage of cyclic loading under 80% loading level is twice compared with those under 70% loading level. The highest volumetric crack strain is about 3000, indicating that the Pocheon granite will fail with 0.3% occupation of microcrack in volume.

  • PDF

Geosynthetic Embankment Stability on Soft Ground Considering Reinforcement Strain (보강재의 변형을 고려한 연약지반위 섬유보강성토제체의 안정해석)

  • 이광열;정진교;황재홍;홍진원;안용수
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2003.03a
    • /
    • pp.867-874
    • /
    • 2003
  • 섬유보강재를 이용한 성토제체의 설계에서 기존의 방법은 보강재의 변형을 무시하고 흙의 변형만을 중요시하고 있다. 보강재에 의해 보강된 성토제체의 파괴면에서 보강재와 흙의 거동은 초기응력단계에서는 일체거동현상을 나타내지만 응력의 증가에 따라 변형량에서 차이를 보인다. 이러한 문제는 토공구조물의 보강재를 설계하는데 있어서 중요한 요소로서 보강효과에 큰 영향을 미칠 수 있다. 본 연구에서는 연약지반 위에 PET Mat로 보강하여 축조한 성토제체에서 보강재와 흙의 응력 - 변형거동을 수치해석을 통하여 분석하였다. 연구결과, 파괴면에서 보강재의 변형은 보강재의 인장강도 크기에 따라 큰 차이를 보이고 있다. 외부하중에 의해 보강재에 발생하는 최대응력은 보강재의 항복인장강도를 초과하지 않으며, 보강재에 발생하는 응력이 성토체에서 발생하는 응력이상일 때 이상적인 것으로 나타났다. 또한 제체의 전단파괴에 대한 안전율은 보강재의 항복인장강도가 증가할수록 증가하는데 보강재와 흙의 변형이 일치되는 이후부터는 안전율의 증가율은 거의 미미한 것으로 나타났다.

  • PDF

Removal of Dyes by the Biosorption Using Biomass of Penicillium janthinellum (Penicillium janthinellum 균체를 이용한 생물흡착에 의한 염료의 제거)

  • 이제혁;전억한
    • KSBB Journal
    • /
    • v.14 no.1
    • /
    • pp.31-35
    • /
    • 1999
  • A biosorption of azo and reactive dyes into the intact and modified biomass of Penicillium janthinellum were investigated. Initial pH of medium affected the initial adsorption rate and decolorization. The initial optimum pH was found to be 2.0, and the maximum adsorption rates of dyes were $40^{\circ}C$. The reactive dyes called Apollocion Red 7EB, Apollofix Red SF-3B and Apollocion Red H-E3B showed the high initial adsorption rates as 0.06, 0.086 and 0.079 mg/g.min, respectively. A mixture of dyes containing azo and reactive dyes was adsorbed to the biomass of Pen. janthinellum and revealed that the initial adsorption rate was 0.084 mg/g.min. Both percent decolorization and the influence on the dye adsorption rate. Modified biomass of Pen. janthinellum was also investigated for the dye adsorption and the superior dye loading performance was observed compared with the ion-exchange/chelating resins used for removal of Apollocion Red 7EB.

  • PDF

Mechanical Characteristics of Light-weighted Foam Soil Consisting of Dredged Soils (준설토를 이용한 경량기포혼합토의 역학적 특성 연구)

  • 김주철;이종규
    • Journal of the Korean Geotechnical Society
    • /
    • v.18 no.4
    • /
    • pp.309-317
    • /
    • 2002
  • The mechanical characteristics of Light-Weighted Foam Soil(LWFS) are investigated in this research. LWFS is composed of the dredged soil from offshore, cement and foam to reduce the unit-weight and increase compressive strength. For this purpose, the unconfined compression tests and triaxial compression tests are carried out on the prepared specimens of LWFS with various conditions such as initial water contents, cement contents, curing conditions and confining stresses. The test results of LWFS indicated that the stress-strain relationship and the compressive strength are strongly influenced by the cement contents rather than the intial water contents of the dredged soils. On the other hand, the stress-strain relationship from triaxial compression test has shown strain-softening behavior regardless of curing conditions. The stress-strain behavior for the various confining stress exhibited remarkable change at the boundary where the confining stress approached to the unconfined compression strength of LWFS. In order to obtain the ground improvement of the compressive strength above 200kPa, the required LWFS mixing ratio is found to be 100%~160% of the initial water contents of dredged soil and 6.6% of cement contents.

A Study on the Effect of Field Shaping on Dose Distribution of Electron Beams (전자선의 선량분포에 있어서 Field Shaping의 효과에 관한 연구)

  • Kang, Wee-Saing;Cho, Moon-June
    • Radiation Oncology Journal
    • /
    • v.4 no.2
    • /
    • pp.165-172
    • /
    • 1986
  • In electron therapy, lead cutout or low-melting alloy block is used for shaping the field. Material for shaping electron field affects the output factor as wet 1 as the collimation system. The authors measured the output factors of electron beams for shaped fields from Clinac-18 using ionization chamber of Farmer type in polystyrene phantom. They analyzed the parameters that affect the output factors. The output factors of electron beams depend on the incident energy, collimation system and size of shaped field. For shaped field the variation of output factor for the field size (A/P) has appearence of a smooth curve for all energy and all applicator collimator combination. The output factors for open field deviate from the curves for shaped fields. An output factor for a given field can be calculated by equivalent field method such as A/P method, if a combination of applicator and collimator is fixed.

  • PDF

Nonlinear Analysis of Reinforced Concrete Shear Wall Using Mander's Fiber Section Analysis Method (Mander의 층상화 단면 해석방법을 이용한 철근콘크리트 전단벽체의 비선형해석)

  • Kim, Ki-Wook;Park, Moon-Ho
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.9 no.3
    • /
    • pp.111-119
    • /
    • 2005
  • The objective of this study is to predict fracture movements accurately and reliably by nonlinear analysis of the response of RC shear wall or RC flange sections. Hognestad's and Vallenas's theories are used for concrete model and Ramberg-Osgood's theory is used for steel model. Non-linear analysis considering confined concrete and unconfined concrete is performed. Mander's Fiber Approach Section analysis, new strain profile considering the Gamma factor are used to this section analysis. The section analysis considering cases of precracked, uncracked, boundary warping and shear warping is performed.

Mechanical Characteristics of Light-weighted Soils Using Dredged Soils (준설토를 활용한 경량혼합토의 역학적 특성 연구)

  • 윤길림;김병탁
    • Journal of the Korean Geotechnical Society
    • /
    • v.18 no.4
    • /
    • pp.75-83
    • /
    • 2002
  • This paper is to investigate the mechanical characteristics of light-weighted soils (LWS) consisting of expanded polystyrene(EPS), dredged clays and cement by using both uniaxial and triaxial compression tests. The mechanical characteristics of the compressive strength of LWS are analysed with varying initial water contents of dredged clays, EPS ratio, cement ratio, and curing stress. In the triaxial compression state, it is found that the compressive strength of LWS containing EPS is independent on the effective confined stress. As the EPS ratio decreases($A_E$<2%) and cement ratio increases($A_c$>2%), the behavior characteristics of triaxial compressive strength-strain relationship is similar to that of cemented soil which decreases rapidly in compressive strength after ultimate compressive strength. For the applications of LWS to ground improvements which require the compressive strength of up to 200kPa, the optimized EPS ratio and initial water content of dredged clay are estimated to be 3~4% and 165~175%, respectively. Also, the ultimate compressive strength under both triaxial test and uniaxial compression states are almost constant for a cement ratio of up to 2% and then critical cement ratio of this LWS shall be 2%.

Compressibility and Strength Characteristics of Light-weighted Foam Soil (경량기포혼합토의 압축 및 강도특성 연구)

  • 윤길림;김병탁
    • Journal of the Korean Geotechnical Society
    • /
    • v.20 no.4
    • /
    • pp.5-13
    • /
    • 2004
  • Strength and compressibility characteristics of Light-Weighted Foam Soil (LWFS) are experimentally investigated in the paper. LWFS is composed of the dredged soils, cement and air foam to reduce unit-weight and to increase compressive strength. For these purposes, both unconfined compression tests and triaxial compression tests are carried out fer artficially prepared specimens of LWFS with various initial water contents, cement contents, mixing ratio of silty dredged soils and different confining stresses. The experimental results of LWFS indicate that the stress-strain relationship and the compressive strength are strongly influenced by cement contents rather than intial water contents of the edged soils. In this paper, the normalizing scheme considering the ratio of initial water contents, cement contents, and air foam contents has been proposed to evaluate the relationship between compressive strength of LWFS and a normalized factor.