• Title/Summary/Keyword: 초기균열하중

Search Result 189, Processing Time 0.022 seconds

Analysis of Strengthening Veriables for Strengthened Bridge Decks by Externally Bonded Sheet (보강판으로 외부부착 보강된 교량 바닥판의 성능향상을 위한 변수 해석)

  • 심종성;오흥섭
    • Journal of the Korea Concrete Institute
    • /
    • v.14 no.4
    • /
    • pp.556-565
    • /
    • 2002
  • The concrete bridge decks on the main girder will usually develop initial cracks in the longitudinal or the transverse direction due to dry shrinkage and temperature change, and as the bridge decks age the crack will gradually develop in different directions due to repeated cyclic loads. The strengthening direction of the concrete bridge deck is a very important factor in improving proper structural behavior. Therefore, in this study, theoretical analyses of strengthened bridge decks were performed using the nonlinear finite element method. To improve the accuracy of the analytical result, boundary conditions and material property of strengthening material was simulated by laboratory condition and test results, respectively. The effect of the strengthening direction and the amount of strengthening material were estimated and compared to the experimental results. The efficiency of the strengthened bridge decks by strengthening variables such as the amount, width and thickness of CFS was observed.

An Experimental Study on the Permeability of Reinforcement Concrete on Consideration of Pre-loading (선행하중을 고려한 보강 콘크리트의 투수성능에 관한 실험적 연구)

  • Han, Byoung-Young;Bae, Ju-Seong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.9 no.3
    • /
    • pp.87-92
    • /
    • 2005
  • The permeability of concrete affects largely on the durability of concrete, therefore it is required that the correct assessment and improvement of permeability. Therefore it is rational method that the permeability of concrete structures is estimated in the common use states under loading than in the early sound conditions. In this study, to improve the permeable efficiency of concrete, some kinds of fiber and resin are mixed in making of concrete specimens. And also, for the reasonable assessment of permeability, after 50% and 70% pre-loadings of its compressive strength were acted on the specimens, the tests were executed. From the results of this study, in the case of 50% pre-loading coefficients of permeability were increased about 1.4times against the nonpre-loading specimens and in the case of 70% pre-loading they were increased about 17.8times. And it turned out that hybrid steel fiber reinforcement is most effective for the improvement of permeable efficiency of concrete.

The Shear Resistance of Rc Deep Beam with Web Opening Repaired and Reinforced by Fiber Sheets After Shear Failure (깊이가 큰 철근콘크리트 유공보의 보수·보강 전후의 내력에 관한 연구)

  • Yang, Chang-Jin
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.8 no.3
    • /
    • pp.149-158
    • /
    • 2004
  • In this study, deep beam specimens are designed to have the effective shear span to depth ratio 1.0 and web opening within effective shear region. The purpose of this study is to investigate experimentally the shear strengthening effect between before failure and after failure upon using fiber sheets for RC deep beam with opening in web. The results can be summarized as follows; 1)When deep beams with web opening were failed in shear, their initial diagonal crack load and crack width were not influenced by their types of the arranged steel bars. 2)Deep beam with the horizontal reinforced bar was effective in the ultimate load of deep beam with web opening in shear failure 3)There were the approximate values between the experimental values and the analysis of finite element method. 4)The ultimate failure strengths of the repaired and strengthened specimens were increased about 34.4%~83.8% in comparison with specimens not to be strengthened.

A Study on the Resistance Against Environmental Loading of the Fine-Size Exposed Aggregate Portland Cement Concrete Pavements (소입경 골재노출콘크리트포장의 환경하중 저항성에 대한 연구)

  • Chon, Beom-Jun;Lee, Seung-Woo;Chae, Sung-Wook;Bae, Jae-Min
    • International Journal of Highway Engineering
    • /
    • v.11 no.2
    • /
    • pp.99-109
    • /
    • 2009
  • Fine-size exposed aggregate portland cement concrete pavements (FEACP) have surface texture of exposed aggregate by removing upper 2$\sim$3mm mortar of surface of which curing is delayed by using delay-setting agent. FEACPs have advantages of maintaining low-noise and adequate skid-resistance level during the performance period than general portland cement concrete pavements. It is necessary to ensure the durability environmental loading to prevent unexpected distress during the service life of FEACP. In the process of curing, volume change accompanied change in by moisture and temperature could be an important cause of crack in concrete to construct for successful FEACP, The use of chloride containing deicer may accelerate defects of concrete pavement, such as crack and scaling. This study aim to evaluate environmental loading resistance of FEACP, based on the estimation of shrinkage-crack-control-capability by moisture evaporation and scaling by deicer in freeze-thaw reaction.

  • PDF

Pile-cap Connection Behavior Dependent on the Connecting Method between PHC pile and Footing (PHC말뚝과 확대기초 연결방법에 따른 접합부 거동)

  • Bang, Jin-Wook;Oh, Sang-Jin;Lee, Seung-Soo;Kim, Yun-Yong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.20 no.3
    • /
    • pp.25-32
    • /
    • 2016
  • The pile-cap connection part which transfers foundation loads through pile body is critical element regarding flexural and shear force because the change of area, stress, and stiffness occurs in the this region suddenly. The purpose of this study is to investigate the structural behavior of pile-cap connection dependent on fabrication methods using conventional PHC pile and composite PHC pile. A series of test under cyclic lateral load was performed and the connection behavior was discussed. From the test results, it was found that the initial rotational stiffness of pile-cap connection was affected by the length of pile-head inserted in footing and the location of longitudinal reinforcing bars. The types of pile and location of longitudinal reinforcing bars governed the behavior of pile-cap connection regarding load-carrying capacity, ductility, and energy dissipation.

Estimation of Initial Tensile Force Acting on Tendon using the Deformation of a Multi-tendon Anchor Head (멀티 텐던 앵커헤드의 변형을 이용한 텐던의 초기 긴장력 추정)

  • Park, Jang Ho;Cho, Jeong-Rae;Park, Jaegyun
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.27 no.6
    • /
    • pp.581-588
    • /
    • 2014
  • The PSC bridges have recently been widely used in Korea. The PSC bridge is a structure whose performance is improved through the use of tendons and steel bars in deflection and cracking characteristics of the concrete. Therefore, measurement or estimation of the load acting on tendon is important in order to maintain the PSC bridges efficiently and safely. This paper deals with a numerical study on the deformation of a multi-tendon anchor head in order to verify the relationship between the load acting on tendon and the deformation of anchor head. All kinematics, material properties and contact nonlinearity are included for the precise analysis and numerical studies are performed by Abaqus. From the numerical results, it is verified that the hoop strain is most useful in the estimation of the load acting on tendon and strains are affected by various parameters such as friction coefficient, boundary conditions, and arrangement.

Comparison on the Behaviors of Inverted Tee and Rectangular Precast Prestressed Concrete Beams Under Combined Bending and Torsion (휨과 비틀림을 받는 프리캐스트 PSC 역T형 보와 직사각형 보의 거동 비교)

  • Seol Dong-Jae;Park Sang-Yeol;Yu Sung-Yong
    • Journal of the Korea Concrete Institute
    • /
    • v.16 no.6 s.84
    • /
    • pp.733-740
    • /
    • 2004
  • This study presents the behaviors of the typical architectural precast prestressed concrete beams, inverted tee and rectangular beams, subjected to combined flexural and torsional loads. For this purpose, two inverted-tee beams were designed with a parking live load, $5 kN/m^2$, and a market load $12 kN/m^2$ according to the currently used typical shape in the domestic building site. Also, two rectangular beams were also designed as the same bottom dimension and area, and reinforced for similar strength as in the cases of inverted tee beams. Total of four beams were tested, under combined bending and torsion, analysed and compared. Test results showed that the cracking and ultimate flexural strength of the beams decreased under torsional loading. However, two different shaped-beams had roughly the same load resisting capacity in service and ultimate states.

Behaviour of Lightweight Concrete Slab Reinforced with GFRP Bars under Concentrated Load (집중하중을 받는 GFRP 보강근 경량콘크리트 슬래브의 거동)

  • Son, Byung-Lak;Kim, Chung-Ho;Jang, Heui-Suk
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.19 no.4
    • /
    • pp.57-66
    • /
    • 2015
  • This paper is a preliminary study to apply the lightweight concrete slabs reinforced with GFRP (glass fiber reinforced polymer) bars to the bridge deck slabs or some other concrete structures. So, some different behaviors between the conventional steel reinforced concrete slab and the lightweight concrete slab reinforced with GFRP bars were investigated. For this purpose, a number of slabs were constructed and then the three point bending test and numerical analysis for these slabs were performed. The flexural test results showed that the lightweight concrete slabs reinforced with GFRP bars were failed by the shear failure due to the over-reinforced design. The weight and failure load of the GFRP bar reinforced lightweight concrete slabs were 72% and 58% of the steel reinforced concrete slab with the same dimensions, respectively. Results of the numerical analysis for these slabs using a commercial program, midas FEA, showed that the load-deflection curve could be simulated well until the shear failure of the slabs, but the applied loads and the deflections continuously increased even beyond the shear failure loads.

Analysis of Mechanical Behavior and Fracture Toughness $K_{IC}$ on EGW Welded Joints for High Strength EH36-TMCP Ultra Thick Plate (고강도 극후판 EH36-TMCP강 EGW용접부의 역학적 거동 및 파괴인성 $K_{IC}$에 관한 해석)

  • Bang, Hee-Seon;Bang, Han-Sur;Joo, Sung-Min
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.22 no.6
    • /
    • pp.565-572
    • /
    • 2009
  • This work intends to establish the reliability and fracture toughness $K_{IC}$ criterion of welded joints by EGW for high strength EH36-TMCP ultra thick plate. For this, firstly thermo elasto-plastic analysis has been carried out on two pass X-groove butt joint model to clarify the thermal and mechanical behaviour(residual stress, plastic strain, magnitude of stress and their distribution and production mechanism). Moreover, to establish fracture criterion, analysis of fracture toughness $K_{IC}$ has been performed under the notch machined and residual stress with the load condition on EGW welded joints. A quantitative fracture criterion for EGW welded joints is suggested by using $K_{IC}$.

Effect of Water Absorption on Fatigue Crack Growth Behavior of E-Glass/Polyerter Composite (E-Glass/Polyester 복합재료의 피로균열성장거동에 미치는 흡습의 영향)

  • Kim, Yon-Jig;Kweon, Il-Hyun;Lim, Jae-Kyoo;Jeong, Se-Hui
    • Korean Journal of Materials Research
    • /
    • v.3 no.1
    • /
    • pp.84-94
    • /
    • 1993
  • This paper deals with the fatigue properties of chopped strand glass mat/polyester composite to understand the effect of water absorption on fatigue behavior of GFRP. The fatigue crack in the both no water and a water absorption materials initiated at the initial of cycle. Thereafter, it was divided with two regions that one decreased with the crack extension and the other increased with the crack extension. The absorption of distilled water degrades the bond strength between fiber and matrix, there, by the tendency of fiber pull-out is increased in perpendicular to crack growth deirection and the debonding of fibers increased to the place which is parallel to crack growth direction. Therefore, the reduction of fatigue strength was caused by these factors.

  • PDF