• Title/Summary/Keyword: 초광대역 필터

Search Result 24, Processing Time 0.021 seconds

The Design of Ultra-Wide Band(UWB) Band Pass Filler with WLAN Notched Band Using Defected Ground Structure (결함 기저면 구조를 이용한 무선 랜 차단대역을 포함하는 Ultra-Wide Band(UWB) 대역통과 필터 설계)

  • Park, Chang-Hyun;Jo, Sung-Sik;Park, Jung-Ah;Kim, Kab-Ki
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2008.10a
    • /
    • pp.299-302
    • /
    • 2008
  • In this paper, A compact ultra-wideband(UWB) bandpass filter(BPF) with WLAN notched filter has been proposed. H-shaped slot is studied and adopted to tighten the coupling of inter-digital capacitor in order to improve the BPF's performance. Three pairs of tapered defected ground structures(DGS) are formed to assign their transmission zeros towards the out of band signal, thereby suppressing the spurious passband. Also Meander line slot is developed to reject the undesired wireless local-area network(WLAN) radio signals. That's combining these three structures we obtain a small sized UWB BPF.

  • PDF

Ultra-wideband BSF Using Multi-stage FSCS (다단 FSCS를 이용한 초광대역 특성의 대역저지 필터)

  • Yun, Tae-Soon
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.15 no.3
    • /
    • pp.439-444
    • /
    • 2020
  • In this paper, the analysis of the FSCS (frequency-selected coupling structure) as the coupling coefficient and multi-stage FSCS for enhanced bandstop bandwidth is suggested. The FSCS is composed by the connected coupled-line and open-stub. Basically, the resonance frequency of the FSCS is given by the electrical length of the stub, and the bandwidth is controlled by the coupling coefficient. Multi-stage FSCS is made by addition of another FSCS with the half electrical length. Manufactured bandstop filter using 3 stage FSCS is measured with the stopband of 177.3% and the maximum return loss of 1dB.

The Design of Ultra-Wide Band(UWB) Band Pass Filter with WLAN Notched Band of DGS(Defected Ground Structure)-Type (DGS형 무선 랜 차단대역을 포함하는 UWB(Ultra-Wide Band) 대역통과 여파기 설계)

  • Kim, Kab-Ki
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.12 no.11
    • /
    • pp.1909-1913
    • /
    • 2008
  • In this paper, A compact ultra-wideband(UWB) bandpass filter(BPF) with WLAN notched filter has been proposed. H-shared slot is studied and adopted to tighten the coupling of inter-digital capacitor in order to improve the BPF's performance. Three pairs of tapered defected ground structures(DGS) are formed to assign their transmission zeros towards the out of band signal, thereby suppressing the spurious passband. Also Meander line slot is de#eloped to reject the undesired wireless local-area network(WLAN) radio signals. That's combining these three structures we obtain a small sized UWB BPF.

Respiration and Heartbeat detection algorithm using UWB radar (UWB 레이더를 사용한 호흡 및 심박 감지 알고리즘)

  • Le, Minhhuy;Hwang, Lan-mi;Fedotov, Dmitry
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.23 no.1
    • /
    • pp.70-76
    • /
    • 2019
  • Ultra Wideband (UWB) Radar is a high-resolution radar for short distance detection which uses signals transmitted and received by each antennas in order to detect a target. It is possible to detect the respiration and heartbeat of a person without contact It is getting more and more often utilized since it is not affected by physical environment. In this paper, we implement an algorithm to detect human respiration and heartbeat rate using UWB radar signal. We process radar signals reflected from human body using Median filter, Kalman filter, Band Pass filter and so on. We also use CZT to extract breathing and heart rate. ECG (Electrocardiogram) was used for comparison of heartbeat data and we confirm that each data of ECG and UWB Radar were more than 98% identical each other.

Design of Band Pass Ring Filter for Ultra Wideband (UWB용 대역통과 링 필터의 설계)

  • Park, Dong-Kook;Seo, Yong-Keun
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.33 no.1
    • /
    • pp.138-143
    • /
    • 2009
  • In this paper, a novel ultra-wide band filter which is operating at frequency bands from 3.1 GHz to 10.6 GHz is suggested. It is modified from the conventional ring filter and consisted of a ring with two parallel open-stub with length of ${\lambda}/8$. It improves the sharpness of the conventional ring filter and is compact. The measured results show that the fabricated filter has a insertion loss of 2.1 dB and the measured group delay of the filter is less than 463 ps through UWB frequency bands.

Ultra-Wideband Band Pass Filter with Controllable Dual Notched Bands Using the CRLH Stubs (CRLH-Stub를 이용한 이중대역 저지 초광대역 대역통과 여파기)

  • Jung, Seung-Back;Yang, Seung-In
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.49 no.7
    • /
    • pp.65-70
    • /
    • 2012
  • In this paper, a compact UWB (Ultra Wideband) BPF(Band-Pass Filter) with dual notched bands is proposed using a hybrid Composited Right-Left Handed (CRLH) and Defected Ground Structure (DGS). To avoid the interferences such as Wireless LAN (Center frequency: 2.4GHz and 5.8GHz), the CRLH is employed to obtain the dual notched bands and the DGS is used to obtain the wide stop-band above the pass-band. The fabricated filter has good performance and has more than 30dB rejection at the center frequency of 2.4 GHz and 5.8GHz. The dual notched bands are easily movable by changing the CRLH parameter. Also the insertion loss is less than 0.4dB in the lower pass-band and 0.7dB in the upper pass-band, and it has small group delay variation less than 0.6ns. The size of the fabricated filter is very compact (17mm*17mm).

Impact of Group Delay in RF BPF on Impulse Radio Systems (임펄스 라디오 시스템에서 RF 대역 통과 필터의 군지연 영향 분석)

  • Myoung Seong-Sik;Kwon Bong-Su;Kim Young-Hwan;Yook Jong-Gwan
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.16 no.4 s.95
    • /
    • pp.380-388
    • /
    • 2005
  • This paper presents analysis results of the effects of RF filter characteristics on the system performance of impulse radio. The impulse radio system transmits modulated pulses having very short time duration and information can be extracted in receiver side based on cross-correlation between received and transmitted pulses. Accordingly, the pulse distortion due to in-band group delay variation can cause serious system performance degradation. In general, RF bandpass filters inevitably cause group delay difference to the signal passing through the filter which is proportional to its skirt characteristic due to its resonance phenomenon. For time as well as frequency domain analysis, small signal scattering parameter $S_{21}$ and its Fourier transform are used to characterize output pulse waveform under the condition that the input and output ports are matched. The output pulse waveform of the filter is predicted based on convolution integral between input pulse and filter transfer function, and resulting BER performances in the BPM and PPM based impulse radio system are calculated.

Design of Active Antenna Diplexers Using UWB Planar Monopole Antennas (초광대역 평면형 모노폴 안테나를 이용한 능동 안테나 다이플렉서의 설계)

  • Kim, Joon-Il;Lee, Won-Taek;Chang, Jin-Woo;Jee, Yong
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.18 no.9
    • /
    • pp.1098-1106
    • /
    • 2007
  • This paper presents active antenna diplexers implemented into an ultra-wideband CPW(Coplanar Waveguide) fed monopole antennas. The proposed active antenna diplexer is designed to direct interconnect the output port of a wideband antenna to the input port of two active(HEMT) devices, where the impedance matching conditions of the proposed active integrated antenna are optimized by adjusting CPW(Coplanar Waveguide) feed line to be the length of 1/20 $\lambda_0$(@5.8 GHz) in planar type wideband antenna. The measured bandwidth of the active integrated antenna shows the range from 2.0 GHz to 3.1 GHz and from 5.25 GHz to 5.9 GHz. The measured peak gains are 17.0 dB at 2.4 GHz and 15.0 dB at 5.5 GHz.

Design and Implementation of UWB BPFs (UWB BPF의 설계 및 구현)

  • Kang, Sang-Gee;Lee, Jae-Myung;Hong, Sung-Yong
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.12 no.5
    • /
    • pp.815-820
    • /
    • 2008
  • Recently the frequency assignment and the technical specifications of UWB systems for communications are completed. Therefore many UWB systems have been developed. In our country $3.1{\sim}4.8GHz$ and $7.2{\sim}10.2GHz$ are assigned for UWB systems for communications. When we consider RF technologies and the easy implementation of UWB systems, UWB systems used in the low band are more developed than high band systems. In this paper we design and implement a BPF for low band UWB systems by means of considering the easy implementation of UWB systems. The designed and implemented BPFs are low band filter and low band channel filters. The measured results of the low band filter show that the filter has 21.85dB and 17.91dB attenuation at 3.1GHz and 4.8GHz, 1.53GHz of -10dB bandwidth and 2dB of insertion loss. Low band can be divided into 3 channels with 500MHz of the channel bandwidth. The channel filter for channel number 1 has the characteristics of 24.85dB attenuation at 3.1GHz, 0.61GHz of -10dB bandwidth and 1.87dB of insertion loss. The filter for channel 3 in low band has 19.2dB of attenuation at 4.8GHz, 0.49GHz of -10dB bandwidth and 2.49dB of insertion loss.

Performance Analysis on the Narrowband Interference Rejection of Impulse Radio System in Frequency Coexistence Environment (주파수 공존 환경에서 Impulse Radio 시스템의 협대역 간섭 제거 성능 분석)

  • Jang, Se-In;Lee, Yang-Sun;Kim, Si-Gwan
    • Journal of Advanced Navigation Technology
    • /
    • v.14 no.5
    • /
    • pp.745-751
    • /
    • 2010
  • In this paper, the proposed a narrowband interference cancellation techniques for the frequence sharing of Ultra wideband Impulse Radio communication system and narrowband communication system. In this system, the narrowband communication signals can cause intolerant interferences to Impulse Radio signals. In this paper, Ultra wideband Impulse Radio system have been analyzed in AWGN, MAI and NI(Narrowband Interference) environment. Also, performance improvement has been obtained by adopting an adaptive notch filtering scheme using Complex Filter Bank and CCI canceller. The results show that there is a substantial enhancement in performance by employing the adaptive notch filtering and/or CCI canceller.