Proceedings of the Korea Water Resources Association Conference
/
2021.06a
/
pp.336-336
/
2021
기후변화와 도시화로 인한 집중 호우와 불투수층 증가로 도시 홍수의 발생 빈도와 규모가 증가하고 있다. 인적, 물적 자원이 집중되어 있는 도시유역의 특성상 침수가 발생하면 이로 인한 직접적 피해 뿐만 아니라 사회경제적 2차 피해를 발생한다. 도시 홍수로 인한 피해를 줄이고 도시의 재해에 대한 회복력을 키우기 위해서는 관측과 더불어 정확한 모의 기술이 중요하다. 한편, 격자 기반 도시 홍수 모의는 집중 호우에 따른 침수의 시공간적 발생 양상을 물리적으로 해석하는 방법으로, 지표수-우수관거 이중배제 통합 모의, 수치기법, 병렬컴퓨팅, 수질 연계 모의 등의 측면에서 지금까지 많은 발전이 이루어져 왔다. 최근들어 원격탐사 기술의 발달로 공간해상도 1미터 수준 혹은 그 이상의 초고해상도 지형자료가 많은 지역에서 대해 가용해지고 있으며, 도시 홍수 해석에 이와 같은 초고해상도 자료를 적용하기 위한 연구가 활발히 진행되고 있다. 본 연구에서는 초고해상도 지형 및 토지 피복 자료의 공간해상도가 침수해석에 미치는 영향을 분석한다. 도시침수의 두가지 주요 요인인 내수침수와 외수범람 중에서 극한 강우에 의한 내수침수해석 사례만을 주요 연구 범위로 한다. 초고해상도 입력자료의 격자기반 도수 해석 모형으로는 운동파 기반의 2차원 지표 흐름 해석 모형을 적용하고, 초고해상도 모의의 효율적 계산을 위해 하이브리드 병렬 컴퓨팅 기술을 이용한다. 초고해상도 입력자료 적용 사례 대비, 공간해상도 저하에 따라 침수 면적이나 깊이 등에서 어떤 변화가 있는지 정량적으로 검토한다. 또한, 강우의 강도 및 공간분포가 초고해상도 도시 홍수 해석에 미치는 영향에 대해서 분석한다. 모의 결과로부터 도시 홍수 해석시 거리 단위(street-level) 정확도의 재현을 위해 적정한 공간해상도를 분석하고, 초고해상도 도시 홍수 모의를 이용한 기후변화에 따른 극한 홍수의 도시지역 영향 분석 및 회복력 개선 관련 연구의 가능성에 대해 논의한다.
Proceedings of the Korean Society of Broadcast Engineers Conference
/
2011.07a
/
pp.524-527
/
2011
본 논문에서는 웨이블릿 기저를 적용하여 영상을 주파수 대역이 각각 다른 영상으로 분리하고 이들과 원본 영상을 조합 후 웨이블릿 역변환을 적용하여 고해상도의 영상을 획득하는 초고해상도 기법을 제안한다. 기존의 단일 영상을 이용한 초고해상도 기법의 경우 영상에서의 고주파 대역을 찾기 위해 확률 기반의 여러 다양한 방법이 제시되었으나 연산 복잡도 증가로 인해 처리시간 증가 등의 문제가 발생한다. 이러한 문제를 해결하기 위해 웨이블릿 기저 함수를 이용한 다양한 초고해상도 기법이 제안되었다. 본 논문에서는 주어진 영상 내에서 웨이블릿 기저 함수를 이용하여 주파수 대역 별로 영상을 먼저 생성하고, 원본 영상과 주파수 대역 별로 분리된 영상을 조합한 후 웨이블릿 역변환을 적용하여 해상도를 증가시키는 새로운 기법을 제안한다. 실험을 통해 제안하는 웨이블릿 기반의 초고해상도 기법이 기존의 해상도 향상을 위한 다양한 보간법에 비해 향상된 효율을 보이는 것을 확인하였다.
Journal of the Korea Institute of Information and Communication Engineering
/
v.17
no.7
/
pp.1672-1686
/
2013
In this paper, we propose a hybrid super-resolution algorithm robust to cut-change. Existing single-frame based super-resolution algorithms are usually fast, but quantity of information for interpolation is limited. Although the existing multi-frame based super-resolution algorithms generally robust to this problem, the performance of algorithm strongly depends on motions of input video. Furthemore at boundary of cut, applying of the algorithm is limited. In the proposed method, we detect a define boundary of cut using cut-detection algorithm. Then we adaptively apply a single-frame based super-resolution method to detected cut. Additionally, we propose algorithms of normalizing motion vector and analyzing pattern of edge to solve various problems of existing super-resolution algorithms. The experimental results show that the proposed algorithm has better performance than other conventional interpolation methods.
Proceedings of the Korean Society of Broadcast Engineers Conference
/
2020.11a
/
pp.228-229
/
2020
최근 딥러닝 기술은 여러 컴퓨터 비전 응용 분야에서 많이 쓰이고 있다. 물체 인식, 분류 및 영상 생성 등을 예로 들 수 있다. 특히 초고해상도 변환 문제에서 최근 딥러닝을 사용하면서 큰 성능 개선을 얻고 있다. Fast super-resolution convolutional neural network (FSRCNN)은 딥러닝 기반 초고해상도 알고리즘으로 잘 알려져 있으며, 여러 개의 convolutional layer로 추출한 저 해상도의 입력 특징을 활용하여 deconvolutional layer에서 초고해상도의 영상을 출력하는 알고리즘이다. 본 논문에서는 병렬 연산 효율성을 고려한 FPGA 기반 convolutional neural networks 가속기를 제안한다. 특히 deconvolutional layer를 convolutional layer로 변환하는 방법을 통해서 에너지 효율적인 가속기를 설계했다. 또한 제안한 방법은 FPGA 리소스를 고려하여 FSRCNN의 구조를 변형한 Optimal-FSRCNN을 제안한다. 사용하는 곱셈기의 개수를 FSRCNN 대비 2.4 배 압축하였고, 초고해상도 변환 성능을 평가하는 지표인 PSNR은 FSRCNN과 비슷한 성능을 내고 있다. 이를 통해서 FPGA 에 최적화된 네트워크를 구현하여 FHD 입력 영상을 UHD 영상으로 출력하는 실시간 영상처리 기술을 개발했다.
In this paper, we propose a super-resolution (SR) image reconstruction algorithm using multi-view images. We acquire 25 images from multi-view cameras, which consist of a $5{\times}5$ array of cameras, and then reconstruct an SR image of the center image using a low resolution (LR) input image and the other 24 LR reference images. First, we estimate disparity maps from the input image to the 24 reference images, respectively. Then, we interpolate a SR image by employing the LR image and matching points in the reference images. Finally, we refine the SR image using an iterative regularization scheme. Experimental results demonstrate that the proposed algorithm provides higher quality SR images than conventional algorithms.
Proceedings of the Korean Society of Broadcast Engineers Conference
/
2014.06a
/
pp.150-152
/
2014
디지털 평판 LCD TV의 영상신호 전송에 LVDS가 사용되어 왔으나 케이블간의 타이밍 문제가 대두되고 초고해상도의 컬러 Depth 확장으로 인해 보다 빠른 전송속도가 요구되어진다. V-by-One HS는 초고해상도 영상처리 IC 및 TCON 간의 새로운 인터페이스 기술로서 최대 3840*2160@240Hz의 해상도 영상구현이 가능하다. 동작 주파수 대역의 공진모드 전압 분포와 V-by-One HS IBIS(Input/Output Buffer Information Specification) 모델 시뮬레이션을 통하여 PCB 설계 방법을 제안한다. 본 논문에서는 V-by-One HS 인터페이스 기술을 사용하여 초고해상도 영상패턴 제어 신호발생기의 시스템 구성을 제안하고 고속영상 신호에 대한 신호 무결성을 검증하고자 한다.
Proceedings of the Korean Society of Broadcast Engineers Conference
/
2013.11a
/
pp.95-97
/
2013
본 논문에서는 초고해상도(UHD) 비디오 캡처/재생 시스템을 위한 MXF 파일 포맷 기반 콘텐츠 입출력 방법에 대해 논의한다. 초고해상도 비디오의 경우, 기존 고해상도(HD) 대비 4배에서 16배 가량의 데이터를 송수신해야 하기 때문에 고속의 데이터 인터페이스를 필요로 할 뿐만 아니라, 디지털 방송에서 사용하는 MXF 파일 포맷에 기반한 콘텐츠 파일을 제공해야 한다. 이와 같은 문제점을 해결하기 위해 MXF 규격에 기반한 외부 에센스 구조를 바탕으로 실시간으로 초고해상도 비디오를 캡처/재생하는 방법을 제시한다. 따라서 제안하는 방식을 적용하여 초고해상도 비디오를 실시간 캡처/재생하는 효율적인 방송 시스템을 구축할 수 있을 뿐만 아니라 압축된 비디오에 적용할 경우 더욱 향상된 성능의 시스템을 구축할 수 있게 된다.
Recently, deep learning technology is widely used in various computer vision applications, such as object recognition, classification, and image generation. In particular, the deep learning-based super-resolution has been gaining significant performance improvement. Fast super-resolution convolutional neural network (FSRCNN) is a well-known model as a deep learning-based super-resolution algorithm that output image is generated by a deconvolutional layer. In this paper, we propose an FPGA-based convolutional neural networks accelerator that considers parallel computing efficiency. In addition, the proposed method proposes Optimal-FSRCNN, which is modified the structure of FSRCNN. The number of multipliers is compressed by 3.47 times compared to FSRCNN. Moreover, PSNR has similar performance to FSRCNN. We developed a real-time image processing technology that implements on FPGA.
Journal of the Korea Institute of Information and Communication Engineering
/
v.22
no.3
/
pp.425-433
/
2018
In this paper, we propose a super-resolution reconstruction algorithm for plenoptic images based on the reliability of disparity. The subperture image generated by the Flanoptic camera image is used for disparity estimation and reconstruction of super-resolution image based on TV_L1 algorithm. In particular, the proposed image reconstruction method is effective in the boundary region where disparity may be relatively inaccurate. The determination of reliability of disparity vector is based on the upper, lower, left and right positional relationship of the sub-aperture image. In our method, the unreliable vectors are excluded in reconstruction. The performance of the proposed method was evaluated by comparing to a bicubic interpolation method, a conventional disparity based method and dictionary based method. The experimental results show that the proposed method provides the best performance in terms of PSNR(Peak Signal to noise ratio), SSIM(Structural Similarity).
Single image-based super-resolution has been studied for a long time in computer vision because of various applications. Various deep learning-based super-resolution algorithms are introduced recently to improve the performance by reducing side effects like blurring and staircase effects. Most deep learning-based approaches have focused on how to implement the network architecture, loss function, and training strategy to improve performance. Meanwhile, Several approaches using Attention Module, which emphasizes the extracted features, are introduced to enhance the performance of the network without any additional layer. Attention module emphasizes or scales the feature map for the purpose of the network from various perspectives. In this paper, we propose the various channel attention and spatial attention in single image-based super-resolution and analyze the results and performance according to the architecture of the attention module. Also, we explore that designing multi-attention module to emphasize features efficiently from various perspectives.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.