• Title/Summary/Keyword: 초고층건축물

Search Result 309, Processing Time 0.026 seconds

Automated Life-Cycle Management System Based on SCM for Super High-rise Buildings Construction (SCM기반 Automated Life-Cycle Management System 구축방안 - 초고층 빌딩 커튼월을 중심으로 -)

  • Yoon Jeong-Hwan;Kim Yea-Sang;Chin Sang-Yoon;Kim Chang-Duk;Choi Yoon-Ki;Chun Jae-Youl;Lim Hyung-Chul
    • Proceedings of the Korean Institute Of Construction Engineering and Management
    • /
    • autumn
    • /
    • pp.430-433
    • /
    • 2003
  • Cost, schedule, quality are the essential parts of success of every construction project. It is especially true in high-rise building construction. Among the construction components in high-rise building construction, curtain walls are very important elements for the project success because they take large portion of cost and schedule. However, curtain wall construction process are very complicated, where many entities including designers, suppliers, contractors and even maintenance contractors are involved. Therefore, control and management of their relationships and production process are critical. It is suggested that this can be solved by the concept of Supply Chain Management which is supported by the automated information technology with Radio Frequency Identification. Such concept is defined as 'Automated Life-Cycle Management System Based On SCM' and this study suggests rode map to establish the system.

  • PDF

Structural Optimization of High-rise Buildings using High-strength Steels (고강도강재의 효율적 사용을 위한 초고층건물의 최적설계기법)

  • Seo, Ji-Hyun;Kwon, Bong-Keun;Kim, Sang-Bum;Park, Hyo-Seon
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.22 no.3
    • /
    • pp.277-287
    • /
    • 2009
  • Recently, the high-strength steel of 400~600MPa tensile strength is producing in the country. Use of high-strength steel member in the design of high-rise buildings is expected to increase the efficiency of structural design in the aspect of structure material weight and cost, however it has been used only a narrow extent. No efficient design method to use high-strength steel in the design of high-rise buildings has been developed. Therefore, in this study structural cost optimization technique that can minimize the structural material cost of high-rise buildings using high-strength steels is developed. The efficiency of the technique is evaluated by comparing the experience-based design for 6 high-rise building examples. As a result, the proposed techniques can save 7~21% of structural material cost compared with experienced-based design. And also, the rough guideline for effective use of high-strength steels in the structural design of high-rise buildings is introduced on the basis of results.

A Study on Classifications and Trends with Convergence Form Characteristics of Architecture in Tall Buildings (초고층빌딩의 융합적 건축형태 분류와 경향에 관한 연구)

  • Park, Sang Jun
    • Korea Science and Art Forum
    • /
    • v.37 no.5
    • /
    • pp.119-133
    • /
    • 2019
  • This study is as skyscrapers are becoming increasingly taller, more constructors have decided the height alone cannot be a sufficient differentiator. As a result, atypical architecture is emerging as a new competitive factor. Also, it can be used for symbolizing the economic competitiveness of a country, city, or business through its form. Before the introduction of digital media, there was a discrepancy between the structure and form of a building and correcting this discrepancy required a separate structural medium. Since the late 1980s, however, digitally-based atypical form development began to be used experimentally, and, until the 2000s, it was used mostly for super-tall skyscrapers for offices or for industrial chimneys and communication towers. Since the 2000s, many global brand hotels and commercial and residential buildings have been built as super-tall skyscrapers, which shows the recent trend in architecture that is moving beyond the traditional limits. Complex atypical structure is formed and the formative characteristics of diagonal lines and curved surfaces, which are characteristics of atypical architecture, are created digitally. Therefore, it's goal is necessary to identify a new relationship between the structure and forms. According to the data of Council on Tall Buildings and Urban Habitat (CTBUH), 100-story and taller buildings were classified into typical, diagonal, curved, and segment types in order to define formative shapes of super-tall skyscrapers and provide a ground of the design process related to the initial formation of the concept. The purpose of this study was to identify the correlation between different forms for building atypical architectural shapes that are complex and diverse. The study results are presented as follows: Firstly, complex function follows convergence form characteristics. Secondly, fold has inside of architecture with repeat. Thirdly, as curve style which has pure twist, helix twist, and spiral twist. The findings in this study can be used as basic data for classifying and predicting trends of the future super-tall skyscrapers.

Optimization Model of Table Form dismantlement Sequence for Reducing Formwork Duration in Tall Building Construction (초고층 거푸집 공사 공기 단축을 위한 테이블폼 해체 순서 최적화 모델)

  • Nam, Chulu;Kwon, Jaebeom;Lim, Hyunsu;Cho, Hunhee;Kang, Kyung-In
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2015.11a
    • /
    • pp.196-197
    • /
    • 2015
  • In tall building construction, time for transporting form affects formwork duration as plan size has become larger and quantity of inputted form has been increased. Thus, necessity of systematic dismantlement sequence of form has been increased to reduce the duration of formwork. Tabu search has been efficiently applied to solve problem of combinatorial optimization by using tabu list which can improve combination values. Therefore, this study proposes optimization model of dismantlement sequence of table form which has been preferred in tall building construction, to reduce the formwork duration by minimizing time for transporting form.

  • PDF

Properties of High Strength Concrete before and after Pumping in Response to Strength Level and Pumping Height (초고층 건축물에서 고강도 콘크리트의 강도 및 압송높이 변화에 따른 펌프 압송 전·후의 물성평가)

  • Jung, Sang-Woon;Lee, Hong-Kyu;Jo, Man-Ki;Kim, Gyu-Dong;Han, Min-Cheol;Han, Cheon-Goo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2014.05a
    • /
    • pp.274-275
    • /
    • 2014
  • As the increase amount of high rise building, equipments for high rise building have been extensively studied. However quality problems caused as the pumping of concrete including loss of flowalility, air content and increasing of the temperature. In this study, fundamental performances of the 80 MPa concrete before·after pumping has been tested. Results showed slump flow increased after pumping temperature of concrete also increased after pumping. Results also shown air content all satisfied the target range and compressive strength of concrete increased about 20 % after pumping, All the performances satisfied the standard for 80 MPa.

  • PDF

Applicability Analysis of Photovoltaic System in the Construction Phase of High-rise Buildings (초고층 건축물 시공단계를 위한 태양광시스템의 적용성 분석)

  • Kang, Go-Une;Kim, Tae-Hoon;Cho, Hun-Hee;Kang, Kyung-In
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2011.11a
    • /
    • pp.21-22
    • /
    • 2011
  • Recently, the development of alternative energy technologies has been actively conducted for energy conservation and CO2 emission reduction. Especially, photovoltaic energy has been applied practically in construction industry, and research on the building-integrated photovoltaic system (BIPV) that can replace fossil fuel for building operation and maintenance has been performed. However, this vibrant research has been limited to the use phase of buildings, and few studies have been carried out in the construction phase. The construction duration and the scale of the sites have increased along with the high-rise trend of buildings, and it is forecasted that the temporary electricity use and CO2 emission in the construction phase is increasing. In sight of these developments, this research analyzed applicability of the photovoltaic system for the construction phase that can replace the electricity used on the high-rise construction site.

  • PDF

Application of 3D Printing Technology for Formwork Constructability Review in Tall Building Construction (초고층 거푸집 공사의 시공성 검토를 위한 3D Printing의 활용)

  • Lee, Junehyuck;Lee, Dongmin;Cho, Hunhee;Kang, Kyung-In
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2016.10a
    • /
    • pp.69-70
    • /
    • 2016
  • The constructability of formwork has a significantly influence on the duration and cost in tall building construction. However, current installation and dismantling process are conducted with heuristic approaches due to the absence of reasonable constructability review method. This study proposes a new method to review the constructability of formwork by utilizing 3D printing technology. It is expected that the suggested review method could reduce formwork duration and cost with subjective, but rational manner.

  • PDF

A Study on the Fire Safety Design Methods of Opening in High-rise Building (초고층고층 건축물의 개구부에 대한 화재안전 설계방법 조사)

  • Kwon, Young-Jin;Jin, Seung-Hyeon;Lee, Byeong-Heun
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2018.05a
    • /
    • pp.8-9
    • /
    • 2018
  • In recent years, the fire risk in the aged housing facilities in high-rise building has been closing up due to the fire in the Grenfell Tower. In the case of these high-rise residential facilities, fire cases of residential facilities such as Uijeongbu Apartment Fire The fire hazard has been reexamined mainly. Especially, the fire of these residential facilities is very closely related to the window, so measures are needed. On the other hand, in Korea, there is almost no fire safety measures against these openings. Therefore, this study suggests improvement measures by comparison with advanced countries based on fire safety measures for domestic windows.

  • PDF

Working Posture Analysis Using OWAS method of Core Wall Construction in High-rise Building (OWAS기법을 활용한 초고층 코어월 공사의 근로자 작업자세 분석)

  • Lee, Junehyuck;Kim, Taehoon;Cho, Hunhee;Kang, Kyung-In
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2016.05a
    • /
    • pp.72-73
    • /
    • 2016
  • Working Posture is an important factor directly connected with quality and productivity of the construction project. In particular, High-rise building construction is required to manage the working posture due to the repetitive task and unfavorable working condition such as high place work, limited space. However existing construction planning of high-rise building construction has a negative effect on the labor's productivity because it is not insufficiently considered for working posture. Therefore the purpose of this study is to suggest a work that needs improvement by analyzing labor's working posture quantitatively using OWAS method. These results would provide the basic information to improve the productivity of the construction project by supporting the construction plan considering the working posture in high-rise building.

  • PDF