• Title/Summary/Keyword: 청정수소

Search Result 273, Processing Time 0.021 seconds

Chemical Oxidation of Cu - and CN - contained Wastewater (Cu - CN 함유 폐수의 화학적 산화)

  • Yoo, Kun-Woo;Seo, Hyung-Joon
    • Clean Technology
    • /
    • v.5 no.1
    • /
    • pp.20-29
    • /
    • 1999
  • In the treatment of Cu - and CN - contained wastewater by using Fenton oxidation-flocculation-precipitation, the optimal removal efficiencies of the cyanide and copper were investigated according to pH, reaction time, the molar ratio of cyanide and hydrogen peroxide and the mass ratio of ferrous sulfate and hydrogen peroxide for Fenton oxidation, and pH for hydroxide precipitation, respectively. As a result, the $CN^-$ removal efficiency in our experimental wastewater by the Fenton oxidation was 81.2%~99% at its optimal conditions of pH ranging from 3 to 5 and reaction time of 30 minutes. And the optimal dosage of hydrogen peroxide and ferrous sulfate was 214, $428mg/{\ell}$, 107, $161mg/{\ell}$, 214, $214mg/{\ell}$ and 520, $500mg/{\ell}$, respectively when the molar ratio of $Cu^{2+}$:CN is 2:1, 1:1, 1:2, 1:10, and was 900, $1050mg/{\ell}$ when the molar ratio of $Cu^+$: CN is 1:10. When the copper was precipitated by sodium hydroxide after Fenton oxidation, the copper removal efficiency in the wastewater at pH 7 was 98.92%, 98.52%, 92.46%, 90.6% and 95%, respectively.

  • PDF

Environmental Assessment of Chemically Strengthened Glass for Touch Screen Panel by Material Life Cycle Assessment (물질전과정평가를 이용한 터치스크린패널용 화학강화유리에 대한 환경성 평가)

  • Lee, Na-Ri;Lee, Soo-Sun;Kim, Kyeong-Il;Hong, Tae-Whan
    • Clean Technology
    • /
    • v.18 no.3
    • /
    • pp.301-306
    • /
    • 2012
  • Rapidly growing mobile machines such as tablet PC and smart phone are equipped with touch screen panel using a sturdy material for products surface protection. Therefore, surge of chemically strengthened glass was increased and the amount of waste matter is proportional to demand. The purpose of this study is environmental impact assessment on touch screen panel of chemically strengthened glass by material life cycle assessment (MLCA). We used CES of Granta, SimaPro and Gabi software for MLCA. Chemically strengthened glass (2.7, 5.7 and 10.3 inch) was calculated to environmental impact assessment by Granta software under two cases. One case is Landfill and the other case is Reuse. As a result, in case of reuse, energy values of 2.7, 5.7 and 10.3 inches were reduced by an average of 51.4%, $CO_2$ values were reduced by an average of 46.6% than Landfill case, respectively. We assessed impact categories of 11 types using SimaPro software. As a result, the contents of fossil fuels, inorganics and climate change have a huge impact than the other impact categories. And the main cause of environmental impact is antimony and hydrogen fluoride in Gabi results.

A Study on the Recovery of Lantanum and Neodymium from Waste Battery Through the Recycling Process (폐 전지로부터 재활용 과정을 통한 란타넘, 네오디뮴 회수에 관한 연구)

  • Chae, Byungman;Lee, Seokhwan;Kim, Deuk-Hyeon;Seo, Eun-Ju;Kim, Hyunil;Lee, Seunghwan;Lee, Sangwoo
    • Clean Technology
    • /
    • v.26 no.2
    • /
    • pp.116-121
    • /
    • 2020
  • In this paper, the recycling of waste Ni-MH battery by-products for electric vehicle is studied. Although rare earths elements still exist in waste Ni-MH battery by-products, they are not valuable as materials in the form of by-products (such as an insoluble substance). This study investigates the recovering of rare earth oxide for solvent extraction A/O ratio, substitution reaction, and reaction temperature, and scrubbing of the rare earth elements for high purity separation. The by-product (in the form of rare earth elements insoluble powder) is converted into hydroxide form using 30% sodium hydroxide solution. The remaining impurities are purified using the difference in solubility of oxalic acid. Subsequently, Yttrium is isolated by means of D2EHPA (Di-[2-ethylhexyl] phosphoric acid). After cerium is separated using potassium permanganate, lanthanum and neodymium are separated using PC88A (2-ethylhexylphosphonic acid mono-2-ethylhexyl ester) and it is calcinated at a temperature of 800 ℃. As a result of the physical and chemical measurement of the calcined lanthanum and neodymium powder, it is confirmed that the powder is a microsized porous powder in an oxide form of 99.9% or more. Rare earth oxides are recovered from Ni-MH battery by-products through two solvent extraction processes and one oxidation process. This study has regenerated lanthanum and neodymium oxide as a useful material.

Formulation of Alternative Non-Aqueous Cleaning Agents to Chlorofluorocarbon Compounds for Cleaning Flux, Solder and Grease (Flux, Solder 및 Grease 세정용 CFC 대체 비수계 세정제 배합 연구)

  • Jung, Young Woo;Lee, Ho Yeoul;Lee, Myoung Jin;Song, Ah Ram;Bae, Jae Heum
    • Clean Technology
    • /
    • v.12 no.4
    • /
    • pp.250-258
    • /
    • 2006
  • CFC compounds such as CFC-113 and 1,1,1-TCE, etc. have been used in various industries due to their excellent chemical stability, thermodynamic characteristics, non-inflammability and anti-corrosiveness. However, in oder to protect the earth environment, "the Montreal Protocol on substances that deplete the ozone layer" was adopted in 1989 for prevention of production and utilization of these CFC compounds and alternative cleaning agent have been required in the industry. The objective of this study is to develop non-aqueous cleaning agents that do not require major change of cleaning system, have excellent cleaning efficiency, are favorable to the environment, are harmless to the human body, and are not generated corrosive materials. In this work, non-aqueous cleaning agents have been formulated with glycol ether series and paraffinic hydrocarbon series with siloxane, and their physical properties and cleaning efficiencies were analyzed and compared with those of regulated materials. As a result of physical properties measurement of the formulated cleaning agents, it is expected that they may have good penetration ability into contaminated materials due to their properties with low density and low surface tension. Measurement of flash point and vapor pressure of the cleaning agents will be helpful for evaluation of their safety and working environment. The experimental results of cleaning flux, solder and grease by the formulated cleaning agents show that their cleaning abilities of soils were good and that there were no residues on the substance after cleaning. Therefore, alternative cleaning agents which have equivalent cleaning ability to regulating materials, good penetration ability and low hazard to human body, have been developed in this work.

  • PDF

Physicochemical Properties of MnO2 Catalyst Prepared via Hydrothermal Process and its Application for CO Oxidation (수열방법으로 합성된 이산화망간의 물리화학적 특성과 일산화탄소 산화반응)

  • Lee, Young-Ho;Jeon, Su A;Park, Sang-Jun;Youn, Hyun Ki;Shin, Chae-Ho
    • Clean Technology
    • /
    • v.21 no.4
    • /
    • pp.248-256
    • /
    • 2015
  • MnO2 was prepared by a hydrothermal process method in the range of 120-200 ℃ and 0.5-5 h, calcined at 300 ℃ after induction of precipitation using KMnO4 and MnCl2・4H2O, and its catalytic activity was compared for CO oxidation. The catalysts were characterized using by X-ray diffraction, N2-sorption, scanning electron microscopy, and temperature programmed reduction of H2 or CO. The crystalline structure of pure α-MnO2 or hybrid α/β-MnO2 was controlled by the preparation conditions. The pure α-MnO2 showed better catalytic activity and thermal stability than hybrid α/β-MnO2. Especially, α-MnO2 prepared at 150 ℃ for 1 h has the highest specific surface area 214 m2 g-1, reducibility and labile lattice oxygen species analyzed by H2, CO-TPR, respectively. It also showed the best CO oxidation activity in both conditions of temperature programmed and isothermal reaction. The results came from the physicochemical properties of catalysts like the crystalline structure, specific surface area, reducibility and lattice oxygen species, and which are correlated with catalytic performance.

Removal of Off-flavor from Laminaria Japonica by Treatment Process of Supercritical Carbon Dioxide (초임계 이산화탄소 처리 공정에 의한 다시마 유래 이취성분 제거)

  • Park, Jung-Nam;Kim, Ryoung-Hee;Woo, Hee-Chul;Chun, Byung-Soo
    • Clean Technology
    • /
    • v.18 no.2
    • /
    • pp.191-199
    • /
    • 2012
  • In order to reduce or remove off-flavor and volatile organic compounds (VOCs) from Laminaria japonica effectively, continuous treatment process by supercritical carbon dioxide (SC-$CO_2$) was applied. After freeze-drying, Laminaria japonica powdered with $710{\mu}m$ was used. Experiments were carried out at temperature range from 35 to $55^{\circ}C$, and pressure range from 10 to 25 MPa for evaluation of SC-$CO_2$ treatment effect. Flow rate of carbon dioxide used in this reseach was constantly fixed at 26.81 g/min. Before and after treatment of SC-$CO_2$, off-flavor and VOCs from Laminaria japonica were analyzed by gas chromatography-mass spectrometry detector (GC-MSD). Total 47 VOCs emitted from Laminaria japonica were identified before treatment of SC-$CO_2$, major components of seaweed smell (ordor) in Laminaria japonica were identified as alcohols, aldehydes, ester and acids, ketone, halogenated compounds and hydrocarbon. Off-flavor and VOCs in all experimental conditions was reduced or removed after SC-$CO_2$ treatment. Among the experimental conditions, the highest removal yield was at 25 MPa and $55^{\circ}C$.

Full-scale EFC Study on Oil Recovery and Reuse from Discharge Gas of Tenter Facility in Textile Industry (Full-scale EFC (Electric Fume Collector)를 활용한 텐타공정 배출가스 정화 및 오일 회수)

  • Hwang, Yeal-Soon;Park, Hee-Jae;Chung, Gu-Hoi;Kim, Duk-Hyun;Na, Byung-Ki
    • Clean Technology
    • /
    • v.17 no.3
    • /
    • pp.259-265
    • /
    • 2011
  • The textile industry is suffered from air pollution problems which must be resolved. In particular, white smoke and odor after the tenter process require abatement. The major air pollution problem in the textile industry occurs during the finishing stages, where various chemicals are used for coating the fabrics. Lubricating oils, plasticizers, and water repellent chemicals are the fabric treatment chemicals. The coated fabrics are cured by heating in tenter facility. In this process, most of air pollutants emitted into the air. White smoke is basically made up of tiny solid or liquid particles of VOCs less than one micron in size. The oil mist can be carried over long distance from their point of origin. The most effective method of removing odor from tenter process is to get rid of tiny oil mist at the emitted gas. For this reason, the full-scale EFC (Electric Fume Collector) of 700 CMM was tested for removing odorous substances emitted from tenter facility. As a result of this study, odor and white smoke can be eliminated effectively and quite large amounts of oil can be recovered.

Catalytic Performance for the Production of Synthetic Natural Gas (SNG) on the Commercial Catalyst in Low Hydrogen Concentration; Influence of Steam and CO2 (낮은 수소농도에서 합성천연가스 생산을 위한 상업용 촉매의 반응특성; 스팀과 CO2에 대한 영향)

  • Kang, Suk-Hwan;Kim, Jin-Ho;Kim, Hyo-Sik;Ryu, Jae-Hong;Jeong, Ki-Jin;Yoo, Young-Don;Kim, Kwang-Jun
    • Clean Technology
    • /
    • v.20 no.1
    • /
    • pp.57-63
    • /
    • 2014
  • In this work, we performed the methanation with steam and synthesis gas of a low $H_2/CO$ ratio to develop a process for producing SNG (synthetic natural gas). In this experiment conditions, the water gas shift reaction and the methanation reaction take place at the same time, and insufficient supply of steam might cause the deactivation of the catalyst. Therefore, the reaction characteristics with the amount of steam was performed, and the methanation on syngas containing $CO_2$ of the high concentration were studied. As a result, the temperature in the catalyst bed decreased by the supply of steam, and the methanation and the water gas shift reaction occurred at the same time. Although methane yield slightly decreased at the methanation using syngas containing $CO_2$ of the high concentration, the long-term operation (1,000 h) in the experimental conditions of this study indicates that this condition is suitable for the new commercial scale SNG process.

Measurement of flash point for binary mixtures of Ethanol, 1-propanol, 2-propanol and 2,2,4-trimethylpentane (Ethanol, 1-propanol, 2-propanol 그리고 2,2,4-trimethylpentane 이성분 혼합계에 대한 인화점 측정)

  • Hwang, In Chan;In, Se Jin
    • Clean Technology
    • /
    • v.25 no.2
    • /
    • pp.140-146
    • /
    • 2019
  • Flammable substances, such as organic solvents, are commonly used in laboratories and industrial processes. The flash point of flammable liquid mixtures is a very important parameter for characterizing the ignition and explosion hazards, and the flash points of mixtures of $C_2{\sim}C_3$ alcohols and 2,2,4-trimethylpentane were measured in the present study. The 2,2,4-trimethylpentane is an important component of gasoline and is frequently used in the petroleum industry as a solvent. Lower flash point data were measured for the binary systems {ethanol + 2,2,4-trimethylpentane}, {1-propanol + 2,2,4-trimethylpentane}, and {2-propanol + 2,2,4-trimethylpentane}. The flash point measurements were carried out according to the standard test method (ASTM D3278) using a Stanhope-Seta closed cup flash point tester. The measured flash points were compared with the predicted values calculated using Raoult's law and also following $G^E$ models: Wilson, Non-Random Two Liquid (NRTL) and UNIversal QUAsiChemical (UNIQUAC). These models were able to predict the experimental flash points for different compositions of {$C_2{\sim}C_3$ alcohols + 2,2,4-trimethylpentane} mixtures with minimal deviations. The average absolute deviation between the predicted and measured lower flash point was less than 1.28 K. A minimum flash point behaviour was observed in all of the systems as in the many observed cases for the hydrocarbon and alcohol mixtures.

Analysis of Dry Process Products for Recycling of Spent Secondary Batteries (폐 이차전지 리사이클링을 위한 건식공정 생성물 분석)

  • Kim, Jinhan;Kim, Yongcheol;Oh, Seung Kyo;Jeon, Jong-Ki
    • Clean Technology
    • /
    • v.27 no.2
    • /
    • pp.139-145
    • /
    • 2021
  • The purpose of this study is to recover valuable metals from spent batteries using a dry process. We focused on the effect of the smelting temperature on the composition of recovered solid and liquid products and collected gaseous products. After removal of the cover, the spent battery was left in NaCl solution and discharged. Then, the spent battery was made into a powder form through a crushing process. The smelting of the spent battery was performed in a tubular electric furnace in an oxygen atmosphere. For spent lithium-ion batteries, the recovery yield of the solid product was 80.1 wt% at a reaction temperature of 850 ℃, and the final product had 27.2 wt% of cobalt as well as other metals such as lithium, copper, and aluminum. Spent nickel-hydrogen batteries had a recovery yield of 99.2 wt% at a reaction temperature of 850 ℃ with about 37.6 wt% of nickel and other metals including iron. For spent nickel-cadmium batteries, the yield decreased to 65.4 wt% because of evaporation with increasing temperature. At 1050 ℃, the recovered metals were nickel (41 wt%) and cadmium (12.9 wt%). Benzene and toluene, which were not detected with the other secondary waste batteries, were detected in the gaseous product. The results of this study can be used as basic data for future research on the dry recycling process of spent secondary batteries.