• Title/Summary/Keyword: 철 촉매

Search Result 250, Processing Time 0.03 seconds

The Effects of Cr-Substitution in Ferrite Catalysts and the Catalytic Dehydrogenation of Ethylbenzene (페라이트 촉매의 Cr 치환효과와 에틸벤젠의 탈수소반응)

  • Lim, Ki-Chul;Kim, Eul-San;Lee, Ho-In
    • Applied Chemistry for Engineering
    • /
    • v.2 no.3
    • /
    • pp.279-288
    • /
    • 1991
  • Mg- and Zn-ferrites having spinel structure, a kind of complex oxides showing the advantageous properties of constituent single metal oxides, were selected to find a relationship between their catalytic activities in the dehydrogenation of ethylbenzene to styrene and the catalytic properties. For the structural and physical analyses of ferrites, XRD, BET, TG/DTA, ESCA, TEM, and TPD methods were employed. The effects of Cr-substitution were intensively studied by the experimental methods mentioned above. Chromium which showed a preferential tendency to diffuse to the surface acted as a structural promoter by increasing surface area and stability of catalyst structure. In the dehydrogenation of ethylbenzene, catalytic activity, and the effects of Cr-substitution were investigated. Oxygen mobility was decreased with the amount of Cr-substitution in $MgCr_xFe_{2-x}O_4$, which resulted in the increase of selectivity to styrene and the suppression of total oxidation.

  • PDF

Recent Trends on Catalytic Oxidation of Benzene without or with Ozone over Mn-Based Catalysts (망간 기반 촉매상에서의 벤젠의 산화와 오존산화에 대한 최근 연구 동향)

  • Park, Sung Hoon;Jeon, Jong-Ki;Kim, Sang Chai;Jung, Sang-Chul;Park, Young-Kwon
    • Applied Chemistry for Engineering
    • /
    • v.25 no.3
    • /
    • pp.237-241
    • /
    • 2014
  • Benzene is a hazardous air pollutant, classified as carcinogenic to humans, that requires special management. Benzene exists both indoors and outdoors and the control measure of indoor benzene is different from that of outdoor benzene. The removal of indoor benzene needs to be accomplished at low temperatures (normally below $100^{\circ}C$), while outdoor benzene is usually removed at much higher temperature ($300-400^{\circ}C$) by using catalytic oxidation. This review paper summarizes the recent trend in catalytic treatment of airborne benzene, focusing on catalytic oxidation and catalytic ozone oxidation. Particular attention is paid to Mn-based catalysts for low-temperature oxidation of benzene, which are more economical than the other noble-metal catalysts. Various methods are used to generate more efficient Mn-based catalysts for benzene removal. Ozone oxidation is attracting particularly significant attention because it can remove benzene effectively below $100^{\circ}C$, even at room temperature.

Application of Iron-Catalyzed Air Oxidation Process for Organics and Color Removals in Recalcitrance Flexographic Inks Wastewater (난분해성 후렉소잉크 폐수중 유기물 및 색도제거를 위한 철촉매 공기산화 공정의 적용)

  • Cho, Yong Duck;Yoon, Hyon Hee;Park, Sang Joong;Kim, Jong Sung;Lee, Sang-Wha
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.20 no.4
    • /
    • pp.487-498
    • /
    • 2006
  • The oxidation processes of metal catalysis were practically applied into the flexographic inks wastewater treatment to derive the most effective and economical system among all the processes of iron-salts coagulation, iron-catalyzed air oxidation, and coagulation followed by biological treatment. The iron concentration and pH were optimized as $2.8{\times}10^{-3}mol$ and 5.5~6.0, respectively, for all the oxidation processes. At the optimal reaction conditions, the removal efficiencies of $TCOD_{Mn}$ and Color were as follows for the respective process: i) 75% $TCOD_{Mn}$ and 77% Color removals for iron-salts coagulation, ii) 91% TCODMn and 90% Color removals for iron-catalyzed air oxidation, iii) 74~92% $TCOD_{Mn}$ and 81~90% Color removals for coagulation followed by biological treatment. Based on the economical and technological aspects, iron-catalyzed air oxidation was confirmed as the most effective process in the treatment of industrial wastewater.

Synthesis of Single-walled Carbon Nanotubes with a Narrow Diameter Distribution via Size-controlled Iron Oxide Nanoparticle Catalyst

  • Kim, Seong-Hwan;Song, U-Seok;Kim, Yu-Seok;Lee, Su-Il;Park, Jong-Yun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.568-568
    • /
    • 2012
  • 뛰어난 물리적, 전기적 특성을 가진 단일벽 탄소나노튜브는 여러 분야에서 응용 가능성이 매우 높은 물질이다. 그러나 단일벽 탄소나노튜브의 전기적 특성은 나노튜브의 직경과 카이랄리티(chirality)에 매우 강하게 의존되기 때문에 균일한 직경과 카이랄리티를 갖는 단일벽 탄소나노 튜브만의 사용은 나노튜브 기반의 전자소자 응용에서 매우 중요하다. 균일한 직경과 카이랄리티의 단일벽 탄소나노튜브를 얻는 방법은 나노튜브 합성을 통한 직접적인 방법과 후처리 기술을 통해 가능하며, 최근에는 금속 나노입자를 촉매로서 화학기상증착(Chemical vapor deposition, CVD)을 이용하여 좁은 직경 분포를 갖는 단일벽 탄소나노튜브의 합성이 보고되었다. 화학기상 증착은 용이하게 단일벽 탄소나노튜브를 합성하며, 성장된 나노튜브의 직경은 촉매금속 나노입자의 크기에 의해 결정된다. 본 연구는 크기가 제어된 산화철 나노입자를 촉매금속으로 사용하여 열화학기상증착법을 이용해 직경분포가 매우 좁고 균일한 단일벽 탄소나노튜브를 합성하였다. 합성된 단일벽 탄소나노튜브 직경과 카이랄리티는 라만 분광법(Raman spectroscopy)과 투과 전자현미경(Transmission electron microscope)을 이용하여 분석하였다.

  • PDF

The Effects of K-Addition and the Catalytic Dehydrogenation of Ethylbenzene on Ferrite Catalysts (페라이트 촉매의 K 첨가효과와 에틸벤젠의 탈수소반응)

  • Kim, Ki-Chul;Lee, Gun Dae;Lee, Ho-In
    • Applied Chemistry for Engineering
    • /
    • v.3 no.4
    • /
    • pp.722-729
    • /
    • 1992
  • Mg-and Zn-ferrites having spinel structure, a kind of complex oxides showing the advantageous properties of constituently single metal oxides, were selected to find a relationship between their catalytic activities in the dehydrogenation of ethylbenzene to styrene and the catalytic properties. For the structural and physical analyses of ferrites, XRD, BET, DTA, XPS, TEM and TPD methods were employed. Potassium added to the catalyst played a role of bifunctional promoter which brought the electronic effect as well as the structural one for the increment of particle dispersion. K-addition decreased acid strength of the catalyst by neutralization and increased its acidity. In the dehydrogenation of ethylbenzene, K-addition let the selectivity to styrene be constant throughout the reaction by the proper acid strength of the ferrite for the reaction, which could be obtained from the neutralization of strong acid sites by potassium.

  • PDF

The deactivation behavior of SCR catalyst by alkali and alkali earth metal (알칼리 및 알칼리 토금속에 의한 SCR 촉매 비활성 거동)

  • Han, Seungyun;Shin, Min-Chul;Lee, Heesoo
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.26 no.6
    • /
    • pp.238-242
    • /
    • 2016
  • The effect of the alkali, alkali earth metal elements on selective catalytic reduction(SCR) catalyst deactivation behavior were investigated in terms of microstructure, surface area, pore volume and De-NOx test. Poisoned SCR catalyst were manufactured by injection of $K_2CO_3$, $Na_2CO_3$, $Ca(CH_3COO)_2{\cdot}H_2O$, $C_4H_6MgO_4{\cdot}4H_2O$, $H_3PO_4$ solutions in the new SCR catalyst at $350^{\circ}C$ for 6 hours. New and poisoned catalysts surface were similar. But specific surface area, pore volume decrease from Na, Mg, K, Ca, P compared to new SCR catalyst. Especially, Na poisoned catalyst surface area and pore size extremely decreased by $10.20m^2/g$, $0.061cm^2/g$. De-NOx test results of new and poisoned catalysts at $150{\sim}450^{\circ}C$ indicated that alkali metal (K, Na) poisoned SCR catalysts have the lowest De-NOx efficiency, alkali earth metal poisoned SCR catalysts (Ca, Mg) De-NOx efficiency are higher than alkali metal poisoned SCR catalysts. P poisoned SCR catalyst De-NOx efficiency is similar new SCR catalyst. It were considered that physical deactivation of SCR catalyst was affected by SCR catalyst surface area and pore volume change.

Comparison of Catalyst Support Degradation of PEMFC Electrocatalysts Pt/C and PtCo/C (PEMFC 전극촉매 Pt/C와 PtCo/C의 촉매 지지체 열화비교)

  • Sohyeong Oh;Yoohan Han;Minchul Chung;Donggeun Yoo;Kwonpil Park
    • Korean Chemical Engineering Research
    • /
    • v.61 no.3
    • /
    • pp.341-347
    • /
    • 2023
  • In PEMFC, PtCo/C alloy catalysts are widely used because of good performance and durability. However, few studies have been reported on the durability of carbon supports of PtCo/C evaluated at high voltages (1.0~1.5 V). In this study, the durability of PtCo/C catalysts and Pt/C catalysts were compared after applying the accelerated degradation protocol of catalyst support. After repeating the 1.0↔1.5V voltage change cycles, the mass activity, electrochemical surface area (ECSA), electric double layer capacitance (DLC), Pt dissolution and the particle growth were analyzed. After 2,000 cycles of voltage change, the current density per catalyst mass at 0.9V decreased by more than 1.5 times compared to the Pt/C catalyst. This result was because the degradation rate of the carbon support of the PtCo/C catalyst was higher than that of the Pt/C catalyst. The Pt/C catalyst showed more than 1.5 times higher ECSA reduction than the PtCo/C catalyst, but the corrosion of the carbon support of the Pt/C catalyst was small, resulting in a small decrease in I-V performance. In order to improve the high voltage durability of the PtCo/C catalyst, it was shown that improving the durability of the carbon support is essential.

Conversion of Methanol to Hydrocarbons over Heteropoly Acids(II) (헤테로폴리산 촉매에 의한 탄화수소로의 메탄올 전환반응(II))

  • Hong, Seong-Soo;Lim, Ki-Chul;Lee, Ho-In
    • Applied Chemistry for Engineering
    • /
    • v.4 no.2
    • /
    • pp.335-341
    • /
    • 1993
  • In the conversion of methanol, the effect of acide property of heteropoly compounds on the catalytic activity was investigated. The pretreatment of Cu-exchanged 12-tungstophosphoric acid with hydrogen enhanced both the selectivity for propane and the conversion of methanol, and the pretreatment of Al-exchanged 12-tungstophosphoric acid with water enhanced the acid strength of the catalyst. The water added into the reactant decreased the conversion of methanol, while the pretreatment temperature did not affect it but the propylene/propane ratio. Various partially-substituted Al salts of 12-tungstophosphoric acid showed different catalytic activities depending on the degree of Al-substitution.

  • PDF

금 나노입자를 이용한 단일벽 탄소나노튜브의 합성

  • Lee, Seung-Hwan;Jeong, Gu-Hwan
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.08a
    • /
    • pp.355-355
    • /
    • 2011
  • 이론적으로 단일벽 탄소나노튜브(SWNT)는 무산란 전도가 가능하여 실리콘을 대체할 차세대 나노소자의 기본소재로서 많은 각광을 받아왔다. 이러한 SWNT의 전기전자적 특성을 좌우하는 주요인자로는 직경과 비틀림도(chirality)가 있으며, 이를 제어하기 위한 많은 방법들이 제시되어왔다. 특히, SWNT 합성 시 필요한 촉매 나노입자의 크기와 튜브직경과의 연관성이 제기된 후부터, 합성단계에서 촉매 나노입자의 형태(또는 크기)를 제어함으로써 SWNT의 직경을 제어하고자 하는 직접적인 방법들도 주요방법의 한 축으로 이어지고 있다. 한편, SWNT의 합성촉매로는 철, 코발트, 니켈 등의 전이금속이 주로 사용되어 왔으나, 최근에는 금, 은, 루테늄, 팔라듐, 백금 등의 귀금속에서부터 다양한 금속산화물 나노입자에 이르기까지 그 범위가 확장되었다. 본 연구에서는, 촉매 나노입자의 크기제어를 통하여 SWNT의 직경을 제어할 목적으로, 전이금속에 비해 상대적으로 융점이 낮아 비교적 낮은 온도의 열처리를 통해서도 입자의 크기를 제어할 수 있는 금 나노입자를 선정하여 SWNT의 합성거동을 살펴보았다. 합성은 메탄을 원료가스로 하는 CVD방법을 이용하였고, 합성되는 SWNT의 다발화(bundling) 등을 방지하기 위하여 수평배향 성장을 도모하였으며, 이를 위하여 퀄츠 웨이퍼를 사용하였다. 우선, 콜로이드상인 금 나노입자의 스핀코팅 조건을 최적화하여 퀄츠 위에 단분산(monodispersion) 된 금 나노입자를 얻었으며, 열처리 온도 및 시간의 제어를 통하여, 1~5 nm 범위 내에서 특정 직경을 갖는 금 나노입자를 얻는 것이 가능하게 되었다. 합성 후 금 나노입자의 크기와 합성된 SWNT 직경과의 관계를 면밀히 조사한 결과, 튜브보다 나노입자의 크기가 약간 큰 것을 확인할 수 있었으며, 금 나노입자의 크기에 따라 SWNT의 합성효율이 크게 좌우되는 것을 확인하였다.

  • PDF