Browse > Article
http://dx.doi.org/10.14478/ace.2014.1050

Recent Trends on Catalytic Oxidation of Benzene without or with Ozone over Mn-Based Catalysts  

Park, Sung Hoon (Department of Environmental Engineering, Suhchon National University)
Jeon, Jong-Ki (Department of Chemical Engineering, Kongju National University)
Kim, Sang Chai (Department of Environmental Education, Mokpo National University)
Jung, Sang-Chul (Department of Environmental Engineering, Suhchon National University)
Park, Young-Kwon (School of Environmental Engineering, University of Seoul)
Publication Information
Applied Chemistry for Engineering / v.25, no.3, 2014 , pp. 237-241 More about this Journal
Abstract
Benzene is a hazardous air pollutant, classified as carcinogenic to humans, that requires special management. Benzene exists both indoors and outdoors and the control measure of indoor benzene is different from that of outdoor benzene. The removal of indoor benzene needs to be accomplished at low temperatures (normally below $100^{\circ}C$), while outdoor benzene is usually removed at much higher temperature ($300-400^{\circ}C$) by using catalytic oxidation. This review paper summarizes the recent trend in catalytic treatment of airborne benzene, focusing on catalytic oxidation and catalytic ozone oxidation. Particular attention is paid to Mn-based catalysts for low-temperature oxidation of benzene, which are more economical than the other noble-metal catalysts. Various methods are used to generate more efficient Mn-based catalysts for benzene removal. Ozone oxidation is attracting particularly significant attention because it can remove benzene effectively below $100^{\circ}C$, even at room temperature.
Keywords
Benzene; oxidation; Mn; ozone; catalyst;
Citations & Related Records
연도 인용수 순위
  • Reference
1 J. H. Park, J. M. Kim, M. Jin, J. K. Jeon, S. S. Kim, S. H. Park, S. C. Kim, and Y. K. Park, Catalytic ozone oxidation of benzene at low temperature over $MnO_x$/Al-SBA-16 catalyts, Nanoscale Res. Lett., 7, 14 (2012).   DOI   ScienceOn
2 H. Einaga, N. Maeda, and Y. Teraoka, Effect of catalyst composition and preparation conditions on catalytic properties of unsupported manganese oxides for benzene oxidation with ozone, Appl. Catal. B: Environ., 142-143, 406-413 (2013).   DOI
3 J. H. Kim, J. S. Jurng, G. N. Bae, J. K. Jeon, K. Y. Jung, S. C. Kim, J. H. Yim, and Y. K. Park, Benzene oxidation with ozone at low temperature over an $MnO_x$ nanoparticle synthesized by spray pyrolysis, Energy Sources Part A, 36, 866-873 (2014).   DOI
4 C. R. Lee, J. Jurng, G. N. Bae, J. K. Jeon, S. C. Kim, J. M. Kim, M. Jin, and Y. K. Park, Effect of Mn precursors on benzene oxidation with ozone over $MnO_x$/MCM-41 at low temperature, J. Nanosci. Nanotechnol., 11, 7303-7306 (2011).   DOI
5 M. Jin, J. H. Kim, J. M. Kim, J. K. Jeon, J. Jurng, G. N. Bae, and Y. K. Park, Benzene oxidation with ozone over $MnO_x$/SBA-15 catalysts, Catal. Today, 204, 108-113 (2013).   DOI
6 J. H. Park, J. M. Kim, J. Jurng, G. N. Bae, S. H. Park, S. C. Kim, J. K. Jeon, and Y. K. Park, Catalytic oxidation of benzene with ozone over Mn/KIT-6, J. Nanosci. Nanotechnol., 13, 423-426 (2013).   DOI
7 M. Jin, J. W. Kim, J. M. Kim, J. Jurng, G. N. Bae, J. K. Jeon, and Y. K. Park, Effect of calcination temperature on the oxidation of benzene with ozone at low temperature over mesoporous ${\alpha}$-$Mn_2O_3$, Powder Technol., 214, 458-462 (2011).   DOI
8 H. C. Genuino, S. Dharmarathna, E. C. Njaji, M. C. Mei, and S. L. Suib, Gas phase total oxidation of benzene, toluene, ethylbenzene, and xylenes using shape-selectivie manganese oxides and copper manganese oxide catalysts, J. Phys. Chem. C., 116, 12066-12078 (2012).   DOI
9 G. Liu, R. Yue, Y. Jia, Y. Ni, J. Yang, H. Liu, Z. Wang, X. Wu, and Y. Chen, Catalytic oxidation of benzene over Ce-Mn oxides synthesized by flame spray pyrolysis, Particuology, 11, 454-459 (2013).   DOI
10 T. Y. Li, S. J. Chiang, B. J. Liaw, and Y. Z. Chen, Catalytic oxidation of benzene over CuO/$Ce_{1-x}Mn_xO_2$ catalysts, Appl. Catal. B: Environ., 103, 143-148 (2011).   DOI   ScienceOn
11 H. Einaga and A. Ogata, Benzene oxidation with ozone over supported manganese oxide catalysts: Effect of catalyst support and reaction conditions, J. Hazard. Mater., 164, 1236-1241 (2009).   DOI
12 Z. Wang, M. Yang, G. Shen, H. Liu, Y. Chen, and Q. Wang, Catalytic removal of benzene over $CeO_2$-$MnO_x$ composite oxides with rod-like morphology supporting PdO, J. Nanoparticle Res., in press.
13 H. Einaga and S. Futamura, Catalytic oxidation of benzene with ozone over Mn ion-exchanged zeolites, Catal. Commun., 8, 557-560 (2007).   DOI
14 H. Einaga and S. Futamura, Catalytic oxidation of benzene with ozone over alumina-supported manganese oxides, J. Catal., 227, 304-312 (2004).   DOI   ScienceOn
15 H. Einaga and A. Ogata, Catalytic oxidation of benzene in the gas phase over alumina-supported silver catalysts, Environ. Sci. Technol., 44, 2612-2617 (2010).   DOI
16 H. Einaga, Y. Teraoka, and A. Ogat, Benzene oxidation with ozone over manganese oxide supported on zeolite catalysts, Catal. Today, 164, 571-574 (2011).   DOI
17 H. Einaga, Y. Teraoka, and A. Ogata, Catalytic oxidation of benzene over manganese oxides supported on USY zeolite, J. Catal., 305, 227-237 (2013).   DOI
18 W. Tang, X. Wu, D. Li, Z. Wang, G. Liu, H. Liu, and Y. Chen, Oxalate route for promoting activity of manganese oxide catalysts in total VOCs' oxidation: Effect of calcination temperature and preparation method, J. Mater. Chem. A., 2, 2544-2554 (2014).   DOI
19 H. B. An, J. M. Kim, J. Jurng, G. N. Bae, J. K. Jeon, S. H. Park, and Y. K. Park, Oxidation of benzene using mesoporous ${\alpha}$-$Mn_2O_3$, J. Nanosci. Nanotechol., 13, 7427-7476 (2013).
20 M. Raciulete and P. Afanasiev, Manganese-containing VOC oxidation catalysts prepared in molten salts, Appl. Catal. A: Gen., 368, 79-86 (2009).   DOI
21 J. H. Park, J. Jurng, G. N. Bae, S. H. Park, J. K. Jeon, S. C. Kim, J. M. Kim, and Y. K. Park, Catalytic oxidation of benzene with ozone over nanoporous Mn/MCM-48, J. Nanosci. Nanotechnol., 12, 5942-5946 (2012).   DOI