DOI QR코드

DOI QR Code

Recent Trends on Catalytic Oxidation of Benzene without or with Ozone over Mn-Based Catalysts

망간 기반 촉매상에서의 벤젠의 산화와 오존산화에 대한 최근 연구 동향

  • Park, Sung Hoon (Department of Environmental Engineering, Suhchon National University) ;
  • Jeon, Jong-Ki (Department of Chemical Engineering, Kongju National University) ;
  • Kim, Sang Chai (Department of Environmental Education, Mokpo National University) ;
  • Jung, Sang-Chul (Department of Environmental Engineering, Suhchon National University) ;
  • Park, Young-Kwon (School of Environmental Engineering, University of Seoul)
  • 박성훈 (순천대학교 환경공학과) ;
  • 전종기 (공주대학교 화학공학부) ;
  • 김상채 (목포대학교 환경교육과) ;
  • 정상철 (순천대학교 환경공학과) ;
  • 박영권 (서울시립대학교 환경공학부)
  • Received : 2014.05.11
  • Published : 2014.06.10

Abstract

Benzene is a hazardous air pollutant, classified as carcinogenic to humans, that requires special management. Benzene exists both indoors and outdoors and the control measure of indoor benzene is different from that of outdoor benzene. The removal of indoor benzene needs to be accomplished at low temperatures (normally below $100^{\circ}C$), while outdoor benzene is usually removed at much higher temperature ($300-400^{\circ}C$) by using catalytic oxidation. This review paper summarizes the recent trend in catalytic treatment of airborne benzene, focusing on catalytic oxidation and catalytic ozone oxidation. Particular attention is paid to Mn-based catalysts for low-temperature oxidation of benzene, which are more economical than the other noble-metal catalysts. Various methods are used to generate more efficient Mn-based catalysts for benzene removal. Ozone oxidation is attracting particularly significant attention because it can remove benzene effectively below $100^{\circ}C$, even at room temperature.

벤젠은 발암성을 가진 유해성 대기 오염물질로 특별한 관리가 필요하다. 특히 벤젠은 실외 뿐만 아니라 실내에서도 존재하기 때문에 실내외를 구분하여 적절한 처리 방법이 요구된다. 실외의 공정에서 배출되는 VOC는 촉매 산화법을 통하여 $300-400^{\circ}C$에서 제거하는 것이 바람직하지만, 실내의 경우는 $100^{\circ}C$ 이하 혹은 실온에서 제거되는 것이 바람직하다. 본 총설은 촉매산화법, 촉매오존산화법 등 다양한 촉매 벤젠 산화법의 최근 동향을 다루고 있으며, 특히 저온산화반응을 위해 Mn 기반 촉매에 중점을 두고 조사하였다. Mn 기반 촉매는 다른 귀금속 촉매에 비하여 경제적으로 매우 이로우며, 특히 다양한 제조법을 적용하여 보다 효율적인 Mn 기반 벤젠 제거 촉매가 개발되고 있다. 또한 오존을 이용하여 $100^{\circ}C$ 이하, 특히 상온에서도 효율적으로 벤젠을 제거할 수 있기 때문에, Mn 기반 촉매의 효율성은 더욱더 증가할 것으로 판단된다.

Keywords

References

  1. W. Tang, X. Wu, D. Li, Z. Wang, G. Liu, H. Liu, and Y. Chen, Oxalate route for promoting activity of manganese oxide catalysts in total VOCs' oxidation: Effect of calcination temperature and preparation method, J. Mater. Chem. A., 2, 2544-2554 (2014). https://doi.org/10.1039/c3ta13847j
  2. H. B. An, J. M. Kim, J. Jurng, G. N. Bae, J. K. Jeon, S. H. Park, and Y. K. Park, Oxidation of benzene using mesoporous ${\alpha}$-$Mn_2O_3$, J. Nanosci. Nanotechol., 13, 7427-7476 (2013).
  3. M. Raciulete and P. Afanasiev, Manganese-containing VOC oxidation catalysts prepared in molten salts, Appl. Catal. A: Gen., 368, 79-86 (2009). https://doi.org/10.1016/j.apcata.2009.08.012
  4. G. Liu, R. Yue, Y. Jia, Y. Ni, J. Yang, H. Liu, Z. Wang, X. Wu, and Y. Chen, Catalytic oxidation of benzene over Ce-Mn oxides synthesized by flame spray pyrolysis, Particuology, 11, 454-459 (2013). https://doi.org/10.1016/j.partic.2012.09.013
  5. T. Y. Li, S. J. Chiang, B. J. Liaw, and Y. Z. Chen, Catalytic oxidation of benzene over CuO/$Ce_{1-x}Mn_xO_2$ catalysts, Appl. Catal. B: Environ., 103, 143-148 (2011). https://doi.org/10.1016/j.apcatb.2011.01.020
  6. Z. Wang, M. Yang, G. Shen, H. Liu, Y. Chen, and Q. Wang, Catalytic removal of benzene over $CeO_2$-$MnO_x$ composite oxides with rod-like morphology supporting PdO, J. Nanoparticle Res., in press.
  7. H. C. Genuino, S. Dharmarathna, E. C. Njaji, M. C. Mei, and S. L. Suib, Gas phase total oxidation of benzene, toluene, ethylbenzene, and xylenes using shape-selectivie manganese oxides and copper manganese oxide catalysts, J. Phys. Chem. C., 116, 12066-12078 (2012). https://doi.org/10.1021/jp301342f
  8. H. Einaga and S. Futamura, Catalytic oxidation of benzene with ozone over Mn ion-exchanged zeolites, Catal. Commun., 8, 557-560 (2007). https://doi.org/10.1016/j.catcom.2006.07.024
  9. H. Einaga and S. Futamura, Catalytic oxidation of benzene with ozone over alumina-supported manganese oxides, J. Catal., 227, 304-312 (2004). https://doi.org/10.1016/j.jcat.2004.07.029
  10. H. Einaga and A. Ogata, Benzene oxidation with ozone over supported manganese oxide catalysts: Effect of catalyst support and reaction conditions, J. Hazard. Mater., 164, 1236-1241 (2009). https://doi.org/10.1016/j.jhazmat.2008.09.032
  11. H. Einaga and A. Ogata, Catalytic oxidation of benzene in the gas phase over alumina-supported silver catalysts, Environ. Sci. Technol., 44, 2612-2617 (2010). https://doi.org/10.1021/es903095j
  12. H. Einaga, Y. Teraoka, and A. Ogat, Benzene oxidation with ozone over manganese oxide supported on zeolite catalysts, Catal. Today, 164, 571-574 (2011). https://doi.org/10.1016/j.cattod.2010.10.067
  13. H. Einaga, Y. Teraoka, and A. Ogata, Catalytic oxidation of benzene over manganese oxides supported on USY zeolite, J. Catal., 305, 227-237 (2013). https://doi.org/10.1016/j.jcat.2013.05.016
  14. H. Einaga, N. Maeda, and Y. Teraoka, Effect of catalyst composition and preparation conditions on catalytic properties of unsupported manganese oxides for benzene oxidation with ozone, Appl. Catal. B: Environ., 142-143, 406-413 (2013). https://doi.org/10.1016/j.apcatb.2013.05.041
  15. J. H. Kim, J. S. Jurng, G. N. Bae, J. K. Jeon, K. Y. Jung, S. C. Kim, J. H. Yim, and Y. K. Park, Benzene oxidation with ozone at low temperature over an $MnO_x$ nanoparticle synthesized by spray pyrolysis, Energy Sources Part A, 36, 866-873 (2014). https://doi.org/10.1080/15567036.2010.547923
  16. C. R. Lee, J. Jurng, G. N. Bae, J. K. Jeon, S. C. Kim, J. M. Kim, M. Jin, and Y. K. Park, Effect of Mn precursors on benzene oxidation with ozone over $MnO_x$/MCM-41 at low temperature, J. Nanosci. Nanotechnol., 11, 7303-7306 (2011). https://doi.org/10.1166/jnn.2011.4789
  17. M. Jin, J. H. Kim, J. M. Kim, J. K. Jeon, J. Jurng, G. N. Bae, and Y. K. Park, Benzene oxidation with ozone over $MnO_x$/SBA-15 catalysts, Catal. Today, 204, 108-113 (2013). https://doi.org/10.1016/j.cattod.2012.09.026
  18. J. H. Park, J. M. Kim, M. Jin, J. K. Jeon, S. S. Kim, S. H. Park, S. C. Kim, and Y. K. Park, Catalytic ozone oxidation of benzene at low temperature over $MnO_x$/Al-SBA-16 catalyts, Nanoscale Res. Lett., 7, 14 (2012). https://doi.org/10.1186/1556-276X-7-14
  19. J. H. Park, J. M. Kim, J. Jurng, G. N. Bae, S. H. Park, S. C. Kim, J. K. Jeon, and Y. K. Park, Catalytic oxidation of benzene with ozone over Mn/KIT-6, J. Nanosci. Nanotechnol., 13, 423-426 (2013). https://doi.org/10.1166/jnn.2013.6952
  20. J. H. Park, J. Jurng, G. N. Bae, S. H. Park, J. K. Jeon, S. C. Kim, J. M. Kim, and Y. K. Park, Catalytic oxidation of benzene with ozone over nanoporous Mn/MCM-48, J. Nanosci. Nanotechnol., 12, 5942-5946 (2012). https://doi.org/10.1166/jnn.2012.6411
  21. M. Jin, J. W. Kim, J. M. Kim, J. Jurng, G. N. Bae, J. K. Jeon, and Y. K. Park, Effect of calcination temperature on the oxidation of benzene with ozone at low temperature over mesoporous ${\alpha}$-$Mn_2O_3$, Powder Technol., 214, 458-462 (2011). https://doi.org/10.1016/j.powtec.2011.08.046

Cited by

  1. 아세트알데히드와 오존 복합악취 저감을 위한 망간기반 촉매 성능 연구 vol.28, pp.2, 2014, https://doi.org/10.14478/ace.2016.1130
  2. Removals of food waste odor using catalytic ozonation at room temperature and its humidity effect vol.18, pp.3, 2019, https://doi.org/10.15250/joie.2019.18.3.253
  3. Removals of odorous compounds from food waste using non-thermal plasma and catalytic oxidation vol.19, pp.2, 2014, https://doi.org/10.15250/joie.2020.19.2.212