• Title/Summary/Keyword: 철 광물

Search Result 347, Processing Time 0.023 seconds

Gemological Characteristics of Rubies and Sapphires from Tanzania (탄자니아산 루비 및 사파이어의 보석광물학적 특성)

  • Park Hee-Yul;Sung Kyu-Youl
    • Journal of the Mineralogical Society of Korea
    • /
    • v.18 no.4 s.46
    • /
    • pp.313-323
    • /
    • 2005
  • XRD, XRF, EPMA, FT-IR, and SEM-CL studies were carried out in order to characterize gemological features of corundum from Tanzania. Fluorescence reaction of the Tanzanian corundum to short and long wave ultraviolet rays was weakly detected. Inclusions in Tanzanian corundum are divided into five types, Type I is fluid-rich inclusion, Type II is gas-rich inclusion, Type III is liquid $CO_{2}$ inclusion, Type IV is solid-rich inclusion, and Type V is a mixture of fluid and solid inclusion and daughter minerals. SEM-CL images show twin structure with growth texture, microphenocryst of spinel solid inclusions, massive and growth texture. Ruby and sapphire from Tanzania are distinctly distinguished by concentrations of Fe and Cr, and plotted in the particular field at $Al_{2}O_{3}/100-Cr_{2}O_{3}-Fe_{2}O_{3}$ diagram. According to FT-IR analysis, all corundum specimens from Tanzania showed the similar patterns, and absorption peaks of $455.09\~459.23\;cm^{-1},\;603.15\~611.71\;cm^{-1},\;1509.00\~1655.05\;cm^{-1}\;and\;3436.41\~3468.87\;cm^{-1}$. These distinctive characteristics mentioned above can be used to identify the locality and source of corundum stones from Tanzania.

Waste Recycling Through Biological Route (생물학적(生物學的) 방법(方法)에 의한 폐기물(廢棄物)의 재활용(再活用))

  • Pradhan, Debabrata;Kim, Dong-Jin;Ahn, Jong-Gwan;Park, Kyung-Ho;Lee, Seoung-Won
    • Resources Recycling
    • /
    • v.17 no.2
    • /
    • pp.3-15
    • /
    • 2008
  • Different toxic wastes are disposed of in our surroundings and these will ultimately threaten the existence of living organisms. Biohydrometallurgy, which includes the processes of bioleaching and bioremediation through the activities of microorganisms such as bacterial or fungal species, is a technology that has the potential to overcome many environmental problems at a reasonable economic cost. Bioleaching were carried out for dissolution of metals from different materials using most important metal mobilizing bacteria such as Thiobacillus ferrooxidans, Thiobacillus thiooxidans and Laptospirillum ferrooxidans. According to the reaction, bioleaching is parted as direct and indirect mechanism. In direct mechanism the bacteria oxidize the sulphides minerals by accepting electron and producing sulphuric acid in leaching media for their growth and metabolism. In other hand the indirect bioleaching is demonstrated as the oxidation of sulphides mineral by the oxidant like $Fe^{3+}$ produced by the iron oxidizing bacteria. Through this process, substantial amount of metal can be recovered from low-grade ores, concentrates, industrial wastes like sludge, tailings, fly ash, slag, electronic scrap, spent batteries and spent catalysts. This may be alternative technology to solve the high deposition of waste, which moves toward a healthy environment and green world.

Heavy Metal Contamination, Mineral Composition and Spectral Characteristics of Reddish Brown Precipitation Occurring at Osip Stream Drainage, Gangwon-do (강원도 오십천 수계에서 발생하는 적갈색침전물의 중금속 오염, 광물조성 및 분광학적 특성)

  • Lim, Jeong Hwa;Yu, Jaehyung;Bae, Sungji;Koh, Sang-Mo;Park, Gyesoon
    • Journal of the Mineralogical Society of Korea
    • /
    • v.31 no.2
    • /
    • pp.75-86
    • /
    • 2018
  • This study analyzed precipitation environment, heavy metal concentration, mineral composition, and spectral characteristics associated with heavy metal concentration and mineral composition for the reddish brown precipitates occurred in the drainage of Dogye mining station. The pH of the reddish brown precipitates ranges from 7.59 to 7.94 resulting neutral. XRF analysis reveals that the precipitates has high Fe concentration, and contaminated with Ni, Cu, and Zn. Dolomite, calcite, goethite, magnetite, kaolinite, pyrophyllite, quartz and aluminum isopropoxide were identified based on XRD analysis. As a result of spectral analysis associated with heavy metal contamination, visible reflectance increases and infrared reflectance decreases with a increase in heavy metal concentration. The spectral characteristics of the reddish brown precipitates is turned out to be manifested by goethite, magnetite, kaolinite, pyrophyllite and aluminum isopropoxide.

Mineralization and Genetic Environments of the Central and Main Orebodies in the Manjang Deposit, Goesan (만장광상 중앙광체와 본광체의 광화작용과 생성환경)

  • Yu, Hyunmin;Shin, Dongbok
    • Journal of the Mineralogical Society of Korea
    • /
    • v.31 no.2
    • /
    • pp.87-101
    • /
    • 2018
  • The Manjang deposit developed in the Hwajeonri formation of the Okcheon metamorphic belt consists of the Central and Main orebodies of Cu-bearing hydrothermal vein type and the Western orebody of Fe-skarn type. This study focuses on the Cu mineralization of the Central and Main orebodies to compare with the genetic environments of the Western orebody previously studied. The Central orebody produced pyrrhotite and chalcopyrite as major ore minerals with vein texture, while the Main orebody contains pyrite, arsenopyrite, and chalcopyrite as major ore minerals with vein, massive, and brecciated texture. Sphalerite, galena, magnetite, ilmenite, rutile, cassiterite, wolframite, and stannite are also accompanied. Local occurrence of skarn is dominated by grossular and hedenbergite, reflecting the reduced condition of the skarnization. Geothermometries of sphalerite-stannite in the Central orebody and arsenopyrite-pyrite in the Main orebody indicate the formation temperature of $204-263^{\circ}C$ and $383-415^{\circ}C$, respectively. Sulfur fugacity of $10^{-6}-10^{-7}atm$. in the Main orebody decreased toward the Central orebody. Sulfur isotope compositions of sulfide minerals from the Central and Main orebodies are 4.6-7.9‰ and 4.3-7.0‰, respectively, reflecting magmatic origin with slight influence by host rock. Considering ore mineralogy, texture as well as physicochemical conditions, the Main and Central orebodies of hydrothermal Cu mineralization reflect the characteristics of proximal and distal type ore mineralization, respectively, related to hidden igneous rocks, and they were generated under different hydrothermal systems from the Fe-skarn Western orebody.

Presence of Leucocratic Granites of the Taebaegsan Region and Its Vicinities (태백산지역과 인근에 분포하는 우백질 화강암체의 존재)

  • Yoo, Jang Han;Koh, Sang Mo;Moon, Dong Hyeok
    • Journal of the Mineralogical Society of Korea
    • /
    • v.26 no.4
    • /
    • pp.263-272
    • /
    • 2013
  • The Taebaegsan region and its vicinities mainly consist of Precambrian granitic gneisses and Cambrian meta-sedimentary rocks. And lots of leucocratic(alkali) granites smaller than the stocks are found here and there. Therefore the presence of leuco-granites is not properly described yet in the former studies. For the effective distinction of several granitic rocks, outcrop characteristics, mineral identification, and petro-chemical properties were studied. Some part of granitc gneisses could be classified into typical metamorphic rocks such as migmatites and banded gneisses. And some shows rather dark appearance with gray quartz and feldspars, and others two mica granites, leucocratic ones etc. But all of leucocratic granites of the region usually show bright milky white to beige color. Since they mainly consist of quartz, feldspars, muscovite, and small amounts of sericites, amphiboles, tourmaline and lepidolite. And all of alkali granites belong to the calc-alkalic, peraluminous and S-type in character. During magmatic differentiation of leucocratic granites, CaO and total Fe contents are clearly decreased than those of the older granitic rocks. On the other hand, magmatic evolution also had induced the greisenization and albitization which enriched the relative amounts of alkali elements such as $K_2O$ and $Na_2O$.

Magnetite and Scheelite-Bearing Skarns in Ulsan Mine, Korea (울산 광산의 철-텅그스텐 스카른화작용)

  • Choi, Seon-Gyu;Imai, Naoya
    • Economic and Environmental Geology
    • /
    • v.26 no.1
    • /
    • pp.41-54
    • /
    • 1993
  • The Ulsan Fe-W deposit, which can be classified as a calcareous skarn deposit, is represented by ore pipe consisting principally of magnetite and lesser amounts of scheelite with minor sulphides, sulphosaits, arsenides, sulpharsenides, etc. At Ulsan mine, metasomatic processes of skarn growth may be divided broadly into two stages based on the paragenetic sequence of calc-silicate minerals and their chemical composition; early and late skarn stages. Early stage has started with the formation of highly calcic assemblages of wollastonite, diopsidic clinopyroxene and nearly pure grossular, which are followed by the formation of clinopyroxenes with salite to ferrosalite composition and grandite garnets with intermediate composition. Based on these calc-silicate assemblages, the temperatures of early skarn formations have been in the ranges of $550^{\circ}$ to $450^{\circ}$. The calc-silicate assemblages formed during the earlier half period of late skarn stage show the enrichment of notable iron and slight manganese, and the depletion of magnesium; clinopyroxenes are hedenbergitic, and grandite garnets are andraditic. The formation temperatures during this skarn stage are inferred to have been in the range of $430^{\circ}$ to $470^{\circ}C$ at low $X_{CO_2}$ by data from fluid inclusions of late andraditic garnets. The later half period of late skarn stage is characterized by the hydrous alteration of pre-existing minerals and the formation of hydrous silicates. The main iron-tungsten mineralization representing prominent deposition of magnetite immediately followed by minor scheelite impregnation has taken place at the middle of early skarn stage, while complex polymetallic mineralization has proceeded during and after the late skarn stage. Various metals and semimetals of Fe, Ni, Co, Cu, Zn, As, Mo, Ag, In, Sn, Sb, Te, Pb and Bi have been in various states such as native metal, sulphides, arsenides, sulphosaits, sulpharsenides and tellurides.

  • PDF

Geology and Mineralization of the Iscaycruz Pb-Zn-Cu Project, Central Peru (페루 중부 이스카이크루즈 연-아연-동 프로젝트의 지질 및 광화작용)

  • Heo, Chul-Ho;Nam, Hyeong-Tae
    • Korean Journal of Mineralogy and Petrology
    • /
    • v.34 no.1
    • /
    • pp.57-67
    • /
    • 2021
  • The geology of the Iskaycruz project are mainly composed of sedimentary rocks within Cretaceous basin. The basal part is composed up of dark-gray shale, gray sandstone, and clastic rock of Oyon formation interbedded with coal measures. In the folded zone in the eastern part of the survey area, there is Chimu formation that has medium-grained massive and white quarztite. In terms of geological structure, the Iskaykruz region is located in the folded and overthrust zones of the central part of the Occidental Mountains. Ore body was formed by hydrothermal replacement process and consists of zinc, lead, silver, and copper. Stratabound-type deposits are hosted in limestone of Santa formation. It extends 12 kilometers discontinuously from northern Canaypata to southern Antapampa. Irregular iron oxide and sulfide minerals hosted in Santa and Parihuanca formations are observed. The mineralization observed on the surface consist of primary sulfides consisting of sphalerite with galena and chalcopyrite, and iron and manganese oxide produced from oxidation of primary sulfides. Skarn minerals are accompanied by tremolite, garnet, epidote and quartz.

A Review on Mineralogical and Geochemical Characteristics of Seafloor Massive Sulfide Deposits in Mid-Ocean Ridge and Volcanic Arc Settings: Water-Rock Interaction and Magmatic Contribution (중앙해령 및 섭입대 화산호 지역 해저열수광상의 광물·지구화학적 특성 고찰: 물-암석 상호작용 및 마그마 영향)

  • Choi, Sun Ki
    • Economic and Environmental Geology
    • /
    • v.55 no.5
    • /
    • pp.465-475
    • /
    • 2022
  • The seafloor massive sulfide deposits are important mineral resources for base and precious metals, and their ore genesis and metal contents are mainly controlled by wall-rock leaching process and/or magmatic volatile input from the underlying magma chamber. However, the contribution of two different metal sources to the seafloor hydrothermal mineralization significantly varies in diverse geological settings and thus still remains controversial. In this review, mineralogical and geochemical characteristics of SMS deposits from mid-ocean ridges (MORs) and volcanic arcs were investigated to understand the contribution from different metal sources and to suggest future challenges that need to be addressed. As a result, the genetic occurrences of enargite and cubanite, galena and barite indicate the effects of magmatic input and water-rock interaction, respectively. Also, the distributional behaviors of Co, As, and Hg in pyrite and FeS content of sphalerite could be useful empirical indicators to discriminate the significant roles of different metal sources between MOR and Arc settings. To date, as most studies have focused on sulfide samples recovered from the seabed, further studies on magmatic sulfides and sulfate minerals are required to fully understand the genetic history of SMS deposits.

Landslide Susceptibility Analysis : SVM Application of Spatial Databases Considering Clay Mineral Index Values Extracted from an ASTER Satellite Image (산사태 취약성 분석: ASTER 위성영상을 이용한 점토광물인자 추출 및 공간데이터베이스의 SVM 통계기법 적용)

  • Nam, Koung-Hoon;Lee, Moung-Jin;Jeong, Gyo-Cheol
    • The Journal of Engineering Geology
    • /
    • v.26 no.1
    • /
    • pp.23-32
    • /
    • 2016
  • This study evaluates landslide susceptibility using statistical analysis by SVM (support vector machine) and the illite index of clay minerals extracted from ASTER(advanced spaceborne thermal emission and reflection radiometer) imagery which can be use to create mineralogical mapping. Landslide locations in the study area were identified from aerial photographs and field surveys. A GIS spatial database was compiled containing topographic maps (slope, aspect, curvature, distance to stream, and distance to road), maps of soil properties (thickness, material, topography, and drainage), maps of timber properties (diameter, age, and density), and an ASTER satellite imagery (illite index). The landslide susceptibility map was constructed through factor correlation using SVM to analyze the spatial database. Comparison of area under the curve values showed that using the illite index model provided landslide susceptibility maps that were 76.46% accurate, which compared favorably with 74.09% accuracy achieved without them.

Studies on Heavy Metal Dissolution Characteristics from Sediments of Andong Dam (안동댐 퇴적물의 중금속 용출 특성 연구)

  • Seo, Jeong Min;Kim, Young Hun;Kim, Jeong Jin
    • Journal of the Mineralogical Society of Korea
    • /
    • v.32 no.4
    • /
    • pp.303-312
    • /
    • 2019
  • In this study, X-ray diffraction, ICP analysis, and leaching experiments were performed to analyze the heavy metals and dissolution characteristics of Andong dam sediments. As a result of X-ray diffraction analysis, Andong dam sediment consists of quartz, plagioclase, chlorite and illite. ICP analysis of sediment showed very high concentrations of As and Cd. Leaching experiments were performed in aerobic and anaerobic condition in a disturbed state. The results of leaching experiment showed that more heavy metals were leached in aerobic than anaerobic conditions. Heavy metal that increased in concentration with time in aerobic conditions were Mn, Zn and Cd, and those in anaerobic conditions were Mn, Fe and As. The leaching ratio of heavy metal concentration in sediment was Mn > Cd > Zn > Ni > Cu > As > Pb ≒ Fe ≒ Cr and Mn > As > Cu > Ni > Zn > Pb ≒ Cd ≒ Fe ≒ Cr in aerobic and anaerobic conditions, respectively.