• Title/Summary/Keyword: 철입자

Search Result 625, Processing Time 0.03 seconds

A Monte Carlo Study of Dose Enhancement according to the Enhancement Agents (몬테칼로 기법을 이용한 방사선 선량증가 물질에 따른 선량증가 효과 평가)

  • Kim, Jung-Hoon;Kim, Chang-Soo;Hwang, Chulhwan
    • Journal of radiological science and technology
    • /
    • v.40 no.1
    • /
    • pp.93-99
    • /
    • 2017
  • Dose enhancement effects at megavoltage (MV) X and ${\gamma}-ray$ energies, and the effects of different energy levels on incident energy, dose enhancement agents, and concentrations were analyzed using Monte Carlo simulations. Gold, gadolinium, Iodine, and iron oxide ($Fe_2O_3$) were compared as dose enhancement agents. For incident energy, 4, 6, 10 and 15 MV X-ray spectra produced by a linear accelerator and a Co-60 ${\gamma}-ray$ were used. The dose enhancement factor (DEF) was calculated using an ICRU Slab phantom for concentrations of 7, 18, and 30 mg/g. The DEF was higher at higher concentrations of dose enhancement agents and at lower incident energies. The calculated DEF ranged from 1.035 to 1.079, and dose enhancement effects were highest for iron oxide, followed by iodine, gadolinium, and gold. Thus, this study contributes to improving the therapeutic ratio by delivering larger doses of radiation to tumor volume, and provides data to support further in vivo and in vitro studies.

High Ferrihydrite Turbidity in Groundwater of Samdong-Myeon (Ulsan) by Carbonate-Water Inflow of Deep Origin (심부 탄산수의 유업에 의한 울산시 삼동면 지하수의 높은 페리하이드라이트 탁도)

  • Jeong, Gi-Young;Kim, Seok-Hwi;Kim, Kang-Joo;Jun, Seong-Chun;Ju, Jeong-Woung;Choi, Mi-Jung;Cheon, Jeong-Yong
    • Journal of the Mineralogical Society of Korea
    • /
    • v.24 no.2
    • /
    • pp.91-99
    • /
    • 2011
  • The turbidity in several wells of Samdong-myeon, Ulsan, exceeded potable groundwater standard (1 NTU). Mineralogical analysis showed that the fine suspended particles are ferrihydrite spheres with a size of less than $0.5\;{\mu}m$ and helical iron-oxidizing bacterial filaments, and their aggregates. Ferrihydrite was almost amorphous only showing two electron diffraction rings, and contained Si and P. Helical bacterial filaments were almost replaced by ferrihydrite. The helical bacteria have played an important role in the ferrihydrite formation by becoming the loci for ferrihydrite precipitation as well as oxidizing ferrous iron. The physicochemical conditions of low pH, low redox potential, high Ca concentration, and high alkalinity are consistent with the hydrogeochemical characteristics of carbonate groundwater, implicating that the inflow of deep ferriferous carbonate groundwater and its oxidation have caused the ferrihydrite turbidity in several wells of the study area.

Effect on Copper Recovery by Ultrasonic Energy during Cementation Reaction from Copper-contained Waste Etching Solution (구리 함유 폐에칭액의 시멘테이션 반응 시 구리 회수에 미치는 초음파 에너지의 영향)

  • Kim, Boram;Jang, Dae-Hwan;Kim, Dae-Weon;Chae, Byung-Man;Lee, Sang-Woo
    • Resources Recycling
    • /
    • v.31 no.4
    • /
    • pp.34-39
    • /
    • 2022
  • In this study, effects of ultrasonic energy on the cementation reaction and copper recovery rate were investigated for different types of iron samples, such as plate, chip, and powder, for recovering copper from waste etchant, which contained ~3.5% copper. The cementation reaction using the ultrasonic energy was more effective than the simple stirring reaction, with the former exhibiting a high copper recovery rate than the latter for the same time interval. When cementation was performed for 25 min with ultrasonic treatment, rather than simple stirring, the copper recovery rate of the plate, chip, and powder improved from 7.0% to 12.0%, 14.0% to 46.1%, and 41.9% to 77.2%, respectively. Therefore, the use of ultrasonic energy could detach the copper recovered by the cementation reaction from the surface of the iron samples, thereby increasing the copper recovery rate. Owing to the use of ultrasonic energy, the copper recovery rate increased by 2-6 times, and the recovered copper exhibited a decreased particle size compared to that obtained via simple stirring.

Mineralogy and Biogeochemistry of Intertidal Flat Sediment, Muan, Chonnam, Korea (전남 무안 갯벌 퇴적물에 관한 광물학적 및 생지화학적 연구)

  • Park, Byung-No;Lee, Je-Hyun;Oh, Jong-Min;Lee, Seuug-Hee;Han, Ji-Hee;Kim, Yu-Mi;Seo, Hyun-Hee;Roh, Yul
    • Journal of the Mineralogical Society of Korea
    • /
    • v.20 no.1 s.51
    • /
    • pp.47-60
    • /
    • 2007
  • While sedimentological researches on Western coastal tidal flats of Korea have been much pelformed previously, mineralogical and biogeochemical studies are beginning to be studied. The objectives of this study were to investigate mineralogical characteritics of the inter-tidal flat sediments and to explore phase transformation of iron(oxyhydr)oxides and biomineralization by metal-reducing bacteria enriched from the inter-tidal flat sediments from Muan, Jeollanam-do, Korea. Inter-tidal flat sediment samples were collected in Chungkye-myun and Haeje-myun, Muan-gun, Jeollanam-do. Particle size analyses were performed using the pipette method and sedimentation method. The separates including sand, silt and clay fractions were examined by scanning electron microscopy (SEM) with energy dispersive X-ray (EDX) analysis, transmission electron microscopy (TEM), and X-ray diffiaction (XRD). After enriching the metal-.educing bacteria from the into,-tidal flat sediments, the bacteria were used to study phase transformation of the synthesized iron (oxyhydr)oxides and iron biomineralization using lactate or glucose as the electron donors and Fe(III)-containing iron oxides as the electron accepters. Mineralogical studies showed that the sediments of tidal flats in Chung]rye-myun and Haeje-myun consist of quartz, plagioclase, microcline, biotite, kaolinite and illite. Biogeochemical researches showed that the metal-reducing bacteria enriched from the inter-tidal flat sediments reduced reddish brown akaganeite and mineralized nanometer-sized black magnetite. The bacteria also reduced the reddish brown ferrihydrite into black amorphous phases and reduced the yellowish goethite into greenish with formation of nm-sized phases. These results indicate that microbial Fe(III) reduction may play one of important roles in iron and carbon biogeochemistry as well as iron biomineralization in subsurface environments.

Growth of Fe3O4 Particles and Their Magnetic Properties (Fe3O4 분말제조와 자기적 특성)

  • Kwon, Woo-Hyun;Lee, Seung-Wha;Chae, Kwang-Pyo;Lee, Jae-Gwang;Sur, Jung-Chul
    • Journal of the Korean Magnetics Society
    • /
    • v.19 no.5
    • /
    • pp.180-185
    • /
    • 2009
  • Fe$_3$O$_4$ particles, prepared by a sol-gel method, were examined for their structural characteristic, particle shapes and sizes, and their magnetic properties. Two different chemical compositions (using a mol rate Fe$^{2+}$/Fe$^{3+}$ = 1/2 and only Fe$^{2+}$) and 2-methoxyethanol were used for making proper solutions. And the solutions were refluxed and dry in a dry oven and the samples were fired at 200$\sim$600$^{\circ}C$ in the N$_2$ atmosphere. The formation of single-phased spinel ferrite powders was identified with the X-ray diffraction measurement as they were fired at above 250$^{\circ}C$. The result of scanning electron microscopy measurement showed the increase of annealing temperature yielded the particle size increased. The magnetic transition was observed using the Mossbaur spectroscopy measurement. As the ferrite, prepared with the chemical composition (Fe$^{2+}$/Fe$^{3+}$ = 1/2), was fired at 250$^{\circ}C$, 78% of the ferrite had a ferrimagnetic property and 22% of the ferrite was non-magnetic. In case of preparing the sample with only Fe$^{2+}$ and annealed at 200$^{\circ}C$, it had a single phased spinel structure but its particle size was too small to be ferrimagnetic. The annealing temperature above 250$^{\circ}C$ made powders a spinel structure regardless of the preparation method. They had a typical soft magnetic property and their saturation magnetization and coercivity became larger as the annealing temperature increased.

Optimum Condition of Soil Dispersion for Remediating Heavy Metal-Contaminated Soils using Wet Magnetic Separation (중금속 오염 토양 정화를 위한 습식자력선별법 사용 시 최적 토양분산 조건)

  • Chon, Chul-Min;Park, Jeong-Sik;Park, Sook-Hyun;Kim, Jae-Gon;Nam, In-Hyun
    • Economic and Environmental Geology
    • /
    • v.45 no.2
    • /
    • pp.121-135
    • /
    • 2012
  • Soil dispersion and heavy metal leaching with two heavy metal-contaminated soils were studied to derive the optimal dispersion condition in the course of developing the remedial technology using magnetic separation. The dispersion solutions of pyrophosphate, hexametaphosphate, orthophosphate and sodium dodecylsulfate (SDS) at 1 - 200 mM and the pH of solutions was adjusted to be 9 - 12 with NaOH. The clay content of suspension as an indicator of dispersion rate and the heavy metal concentration of the solution were tested at the different pHs and concentrations of the dispersion solution during the experiment. The dispersion rate increased with increasing the pH and dispersion agent concentration of the solution. The dispersion efficiency of the agents showed as follows: pyrophosphate > hexametaphosphate > SDS > orthophosphate. Arsenic leaching was sharply increased at 50 mM of phosphates and 100 mM of SDS. The adsorption of $OH^-$, phosphates and dodecysulfate on the surface of Fe- and Mn-oxides and soil organic matter and the broken edge of clay mineral might decrease the surface charge and might increase the repulsion force among soil particles. The competition between arsenic and $OH^-$, phosphates and dodecylsulfate for the adsorption site of soil particles might induce the arsenic leaching. The dispersion and heavy metal leaching data indicate that pH 11 and 10 mM pyrophosphate is the optimum dispersion solution for maximizing dispersion and minimizing heavy metal leaching.

Removal of Cochlodinium polykrikoides using the Dredged Sediment from a Coastal Fishery (연안어장 준설퇴적물을 이용한 Cochlodinium polykrikoides 제거)

  • Sun, Young-Chul;Kim, Myoung-Jin;Song, Young-Chae;Ko, Seong-Jeong;Hwang, Eung-Ju;Jo, Q-Tae
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.32 no.1
    • /
    • pp.53-60
    • /
    • 2010
  • In the present study, experiments have been performed to investigate the possibility of removing Cochlodinium polykrikoides using the dredged sediment from a coastal fishery and then to derive the optimal conditions; the amount and particle size of dredged sediment besprinkled into water, the thermal treatment, the types and amounts of additives, and the depth profile of Cochlodinium polykrikoides. Results showed that the optimal amount of dredged sediment besprinkled into water was 6~10 g/L, and the removal efficiency of Cochlodinium polykrikoides after the reaction time for 60 min was 73~93%. Note that, in the real sea water, it is necessary to besprinkle 6~10 $kg/m^3$ of dry dredged sediment on a unit area (1 $m^2$). With decreasing particle size, Cochlodinium polykrikoides could be more efficiently removed. The removal efficiency was 93% with the dredged sediment smaller than 100 ${\mu}m$, whereas it was 51% with that of 100 ${\mu}m$ ${\mu}m$. Since most of dredged sediment (over 90%) was smaller than 100 ${\mu}m$, high efficiency could be obtained by besprinkling only the dredged sediment without pre-treatment. CaO was found to be an effective additive in promoting the removal efficiency (up to 99%). The optimal amount of additive was 5~10%, however, it was necessary to use as small amount of an additive as possible in order to avoid the sharp increase in pH. The removal efficiency increased with increasing depth profile of Cochlodinium polykrikoides. The removal efficiency was 83% at 5 cm depth, whereas it was 93% at 50 cm depth. In the sea water, red tide occurred within 3 m depth, and furthermore most Cochlodinium polykrikoides existed within 1 m depth. It was, therefore, expected that higher removal efficiency of Cochlodinium polykrikoides could be obtained when the dredged sediment was besprinkled into the sea water. The removal efficiency of Cochlodinium polykrikoides was up to 93% when the dredged sediment (<100 ${\mu}m$) was besprinkled into water at the ratio of 10 g/L. This result was comparable to that obtained with loess (90~97%). All the results in the present study indicated that the dredged sediment from a coastal fishery could be successfully used as a substitute of loess for removing the red tide alga.

The Preparation of Magnetic Chitosan Nanoparticles with GABA and Drug Adsorption-Release (GABA를 담지한 자성 키토산 나노입자 제조와 약물의흡수 및 방출 연구)

  • Yoon, Hee-Soo;Kang, Ik-Joong
    • Korean Chemical Engineering Research
    • /
    • v.58 no.4
    • /
    • pp.541-549
    • /
    • 2020
  • The Drug Delivery System (DDS) is defined as a technology for designing existing or new drug formulations and optimizing drug treatment. DDS is designed to efficiently deliver drugs for the care of diseases, minimize the side effects of drug, and maximize drug efficacy. In this study, the optimization of tripolyphosphate (TPP) concentration on the size of Chitosan nanoparticles (CNPs) produced by crosslinking with chitosan was measured. In addition, the characteristics of Fe3O4-CNPs according to the amount of iron oxide (Fe3O4) were measured, and it was confirmed that the higher the amount of Fe3O4, the better the characteristics as a magnetic drug carrier were displayed. Through the ninhydrin reaction, a calibration curve was obtained according to the concentration of γ-aminobutyric acid (GABA) of Y = 0.00373exp(179.729X)-0.0114 (R2 = 0.989) in the low concentration (0.004 to 0.02 wt%) and Y = 21.680X-0.290 (R2 = 0.999) in the high concentration (0.02 to 0.1 wt%). Absorption was constant at about 62.5% above 0.04 g of initial GABA. In addition, the amount of GABA released from GABA-Fe3O4-CNPs over time was measured to confirm that drug release was terminated after about 24 hr. Finally, GABA-Fe3O4-CNPs performed under the optimal conditions were spherical particles of about 150 nm, and it was confirmed that the properties of the particles appear well, indicating that GABA-Fe3O4-CNPs were suitable as drug carriers.

Water Flow Distribution and Sedimentation Characteristics of Particle Materials in the Sihwa Constructed Wetland (시화호 인공습지의 물흐름 분포 및 입자성물질 퇴적 특성)

  • Choi, Dong-Ho;Choi, Kwang-Soon;Kim, Sea-Won;Oh, Young-Taek;Kim, Dong-Sup;Joh, Seong-Ju;Park, Je-Chul
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.29 no.4
    • /
    • pp.425-437
    • /
    • 2007
  • Flow distribution of water and sedimentation rate were investigated to understand the hydrodynamics and settling characteristics of particulate materials in a constructed wetland for treatment of non-point sources pollutants, the Sihwa constructed wetland, Korea. The Sihwa constructed wetland is divided into three sub-wetlands(the Banwol, the Donghwa and the Samhwa wetlands) to treat the polluted water from three streams, the Banwol stream, the Donghwa stream and the Samhwa stream. From the results of water flow experiment using dye(Rhodamine 50WT Red), it was found that the water flow in the wetland was prevailing at the waterway and open water. Dye was spread slowly in the closed water area planted by plants. The mean hydraulic retention time(HRT) at the upper area of high wetland and lower wetland of Banwol, was found to be 34.1 hr at the upper area and 74.6 hr at the lower area respectively, totaling approximately 108.7 hr(4.5 days). The sedimentation rate was higher at lower area(sites of B, C and D) of the wetland than upper area(site of A which is settling zone). Based on the forecast for 20 years as to the amount of sediment that can be deposited in the open water in the future, the sediment depth of each area would be like this: A: 6.3 cm, B: 8.3 cm, C: 7.0 cm, D: 9.5 cm. The contents of organic materials in the sediment deposited within the sediment trap were found to be higher overly in the first investigation period which had much rainfall, and B, C and D areas were found to have an increased COD accumulation than A area. Also, nitrogen and phosphorus were found to increase in the down-stream of the wetland. The results of this study suggest that a sustainable research and management for the characteristics of water flow pattern and sedimentation changeable as time passes is needs to maintain or improve the efficiency of water treatment in the constructed wetland.

Characterization of Concentrations of Fine Particulate Matter in the Atmosphere of Pohang Area (포항지역 대기 중 초미세먼지(PM$_{2.5}$)의 오염특성평가)

  • Baek, Sung-Ok;Heo, Yoon-Kyeung;Park, Young-Hwa
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.30 no.3
    • /
    • pp.302-313
    • /
    • 2008
  • The purposes of this study are to investigate the concentration levels of fine particles, so called PM$_{2.5}$, to identify the affecting sources, and to estimate quantitatively the source contributions of PM$_{2.5}$. Ambient air sampling was seasonally carried out at two sites in Pohang(a residential and an industrial area) during the period of March to December 2003. PM$_{2.5}$ samples were collected by high volume air samplers with a PM$_{10}$ Inlet and an impactor for particle size segregation, and then determined by gravimetric method. The chemical species associated with PM$_{2.5}$ were analyzed by inductively coupled plasma spectrophotometery(ICP) and ion chromatography(IC). The results showed that the most significant season for PM$_{2.5}$ mass concentrations appeared to be spring, followed by winter, fall, and summer. The annual mean concentrations of PM$_{2.5}$ were 36.6 $\mu$g/m$^3$ in the industrial and 30.6 $\mu$g/m$^3$ in the residential area, respectively. The major components associated with PM$_{2.5}$ were the secondary aerosols such as nitrates and sulfates, which were respectively 4.2 and 8.6 $\mu$g/m$^3$ in the industrial area and 3.7 and 6.9 $\mu$g/m$^3$ in the residential area. The concentrations of chemical component in relation to natural emission sources such as Al, Ca, Mg, K were generally higher at both sampling sites than other sources. However, the concentrations of Fe, Mn, Cr in the industrial area were higher than those in the residential area. Based on the principal component analysis and stepwise multiple linear regression analysis for both areas, it was found that soil/road dust and secondary aerosols are the most significant factors affecting the variations of PM$_{2.5}$ in the ambient air of Pohang. The source apportionments of PM$_{2.5}$ were conducted by chemical mass balance(CMB) modeling. The contributions of PM$_{2.5}$ emission sources were estimated using the CMB8.0 receptor model, resulting that soil/road dust was the major contributor to PM$_{2.5}$, followed by secondary aerosols, vehicle emissions, marine aerosols, metallurgy industry. Finally, the application and its limitations of chemical mass balance modeling for PM$_{2.5}$ was discussed.