• Title/Summary/Keyword: 철도 안전 시스템

Search Result 783, Processing Time 0.036 seconds

The Knowledge, Attitude and Behavior on the Radiation Safety Management for Dental Hygiene Major Students (치위생(학)과 학생의 방사선안전관리에 대한 지식, 태도 및 행위)

  • Jeon, Yeo Ryeong;Cho, Pyong Kon;Han, Eun Ok;Jang, Hyon Chul;Ko, Jong Kyung;Kim, Yong Min
    • Journal of radiological science and technology
    • /
    • v.38 no.4
    • /
    • pp.411-420
    • /
    • 2015
  • Objectives : This study tries to find the educational basis based on the radiation safety knowledge, attitudes and behaviors to check the level of radiation safety behavior in domestic students who study dental hygiene. Methods : The students of 3rd and 4th grades in 83 universities which have registered on the Korean University Education Council were involved, and they were given a questionnaire for this study. The questionnaire was provided via visit with 20 copies to each university (total 1660 copies), mail by post and e-mail. Among them, we analyzed only 723 copies that we can trust. The data were analyzed with frequency, percentage, mean, standard deviation and Pearson's correlation using the SPSS/WIN 15.0. Results : As a result, there are correlations in the students' knowledge, attitudes and behaviors regarding the radiation safety management. It means that the education which can improve the knowledge and attitudes should be applied to increase the action level of the radiation safety. In addition, the physical environment is the most closely correlated with the individual behavior, so it will be limited to improve the behavioral levels of the radiation safety if the physical environment is not prepared. Therefore, the physical environment should be supported to enhance the level of the radiation safety activity, and to increase the individual attitude level of radiation safety. Conclusions : The knowledge level of the radiation safety management is relatively lower than the attitudes level, and the behavior level is the lowest. Therefore, the education policy of the safety behavior must be enhanced. For domestic students, the educational intervention is necessary to improve their behavioral level of radiation safety management because they will be able to reduce the amount of radiation exposure of their patients in dental care after getting a job.

Preprocessing-based speed profile calculation algorithm for radio-based train control (무선통신기반 열차간격제어를 위한 전처리 기반 속도프로파일 계산 알고리즘)

  • Oh, Sehchan;Kim, Kyunghee;Kim, Minsoo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.9
    • /
    • pp.6274-6281
    • /
    • 2015
  • Radio-based train control system has driving headway shortening effect by real-time train interval control using two-way radio communication between onboard and wayside systems, and reduces facility investment because it does not require any track-circuit. Automatic train protection(ATP), the most significant part of the radio-based train control system, makes sure a safe distance between preceding and following trains, based on real-time train location tracing. In this paper, we propose the overall ATP train interval control algorithm to control the safe interval between trains, and preprocessing-based speed profile calculation algorithm to improve the processing speed of the ATP. The proposed speed profile calculation algorithm calculates the permanent speed limit for track and train in advance and uses as the most restrictive speed profile. If the temporary speed limit is generated for a particular track section, it reflects the temporary speed limit to pre-calculated speed profile and improves calculation performance by updating the speed profile for the corresponding track section. To evaluate the performance of the proposed speed profile calculation algorithm, we analyze the proposed algorithm with O-notation and we can find that it is possible to improve the time complexity than the existing one. To verify the proposed ATP train interval control algorithm, we build the train interval control simulator. The experimental results show the safe train interval control is carried out in a variety of operating conditions.

The Evaluation of Effectiveness on RFID system based Logistics process (RFID 시스템 기반 물류프로세스 유효성 평가)

  • Choi, Yong-Jung;Han, Dae-Hee;Jeong, Hae-June;Han, Woo-Chul;Kim, Hyun-Soo
    • Journal of the Korea Society of Computer and Information
    • /
    • v.15 no.6
    • /
    • pp.111-120
    • /
    • 2010
  • Looking at the application examples related to RFID systems around the world, it is easy to find that RFID systems are introduced in various industries, such as retail and consumer goods sectors, financial and security sectors, automotive and transport sector, leisure and sports sector, logistics, and health-related fields. This is because they can get their operational efficiency and competitiveness by means of product's visibility and transparency of information through RFID systems. However, it is required that evaluation of effectiveness on introducing RFID systems should be performed to strengthen construction willingness of RFID systems before actual introduction of the RFID systems in the process. This activity affects to introduction of RFID systems in industry-wide and then, will be able to create a synergy effect such as national industrial competitiveness improvement. The purpose of this study is to offer rational method on effectiveness analysis before and after RFID based process. Accordingly, the proposed Choquet fuzzy integral-based model will be allowed rational analysis by integrating quantitative and qualitative analysis. Through the effectiveness analysis of C company's RFID based process using the proposed evaluation model, we could identify that RFID-based logistics process was more effective than existing process.

A Study on the Fire Safety of the several Oils for the Vehicles (차량용 오일의 화재안전성에 관한 연구)

  • Lee, Hae Pyeong;Park, Young Ju;Lee, Seung Chul;Kim, Hae Rim
    • 한국방재학회:학술대회논문집
    • /
    • 2011.02a
    • /
    • pp.194-194
    • /
    • 2011
  • 현대 사회에서 차량을 비롯한 선박, 항공기와 같은 각종 수송수단들은 그 용도와 형태도 다양하고 널리 보급되어있을 뿐만 아니라 각 분야에서 없어서는 안 될 필수품이 되어 있다. 그러나 수송수단의 수와 활용빈도수가 증가함에 따라 그로 인한 차량화재, 선박화재 그리고 항공기화재 등과 같은 특수화재의 발생에 따른 재산 및 인명피해의 문제점들도 함께 늘어나고 있는 실정이다. 2009년 기준, 1년 동안의 전체 화재발생건수 47,071건 가운데 차량화재의 발생건수가 5,958건으로서 전체의 12.6% 정도를 차지하였다. 그뿐만 아니라 차량 내장재의 주 재질은 가연성을 지닌 열가소성 합성수지들로서 화재가 발생하였을 경우, 다량의 가연성 가스 및 독성가스를 방출하기 때문에 인명 및 재산 피해를 증가시키는 문제점을 갖고 있다. 하지만 아직까지도 이와 같은 수송수단에 대한 화재를 예방하거나 피해를 최소화할 수 있는 화재진압대책 등에 관한 연구는 미흡한 실정이다. 따라서 본 연구에서는 이러한 문제점을 해결하고 과학적이며 체계적인 대응방안을 수립하기 위한 기초 자료를 확보하고 이를 통한 수송수단의 화재안전성을 분석하고자 각종 수송수단에서 사용되는 오일을 대상으로 연소특성 분석 및 화재하중에 관한 연구를 수행하였다. 분석 대상 오일은 연료용과 부속용 오일로 크게 분류되며, 연료용 오일로는 차량용 경유와 휘발유 그리고 군용차량용 경유, 항공기용 백등유와 제트유, 선박용 고유황경유 등을 선정하였다. 부속용 오일로는 브레이크오일, 파워오일, 엔진오일, 자동변속기오일, 수동변속기오일을 대상으로 각각 일반용과 고급형 2가지씩 시료를 선정하여 분석을 수행하였다. 분석방법은 대상오일들의 기초물성을 고찰하기 위해서 비중계를 이용하여 각 시료들의 비중을 측정하였으며, 문헌으로부터 끓는점, 어는점 및 점도 등을 조사하였다. 또한, 대상오일들의 착화특성을 살펴보고자 콘칼로리미터와 인화점 측정기 및 발화점 측정기 등을 이용하여 발열량, 착화시간, 발연량, 발화점, 인화점 등을 측정하였다. 대상오일들의 물성 및 착화특성에 대한 측정결과를 살펴보면, 비중은 $725.8{\sim}1072.0kg/m^3$ 정도의 값을 나타냈고, 인화점은 영하의 인화점을 갖는 휘발유의 경우, 장비의 특성상 분석이 곤란하여 측정하지 못하였으며, 다른 시료들은 $45.3{\sim}266.6^{\circ}C$정도의 값을 나타냈다. 발화점은 $325.7{\sim}600.6^{\circ}C$정도의 값을 갖는 것으로 나타났다. 따라서 이와 같은 결과들을 활용하면 차량, 선박, 항공기 등에 대한 화재발생과 관련된 화재안전성을 분석하고 이를 통한 수송시스템의 화재에 대한 예방 및 대응 방안의 효율성을 높일 수 있을 것으로 생각된다.

  • PDF

Theoretical Seismic Analysis of Butterfly Valve for Nuclear Power Plant (원자력 발전소용 버터플라이밸브의 내진해석)

  • Han, Sang-Uk;Ahn, Jun-Tae;Lee, Kyung-Chul;Han, Seung-Ho
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.9
    • /
    • pp.1009-1015
    • /
    • 2012
  • Valves are one of the most important components of a pipeline system in a nuclear power plant, and it is important to ensure their structural safety under seismic loads. A crucial aspect of structural safety verification is the seismic qualification, and therefore, an optimal shape design and experimental seismic qualification is necessary in case the configuration of the valve parts needs to be modified and their performance needs to be improved. Recently, intensive numerical analyses have been performed before the experimental verification in order to determine the appropriate design variables that satisfy the performance requirements under seismic loads. In this study, static and dynamic numerical structural analyses of a 200A butterfly valve for a nuclear power plant were performed according to the KEPIC MFA. The result of static analysis considering an equivalent static load under SSE condition gave an applied stress of 135 MPa. In addition, the result of dynamic analysis gave an applied stress of 183 MPa, where the CQC method using response spectrums was taken into account. These values are under the allowable strength of the materials used for manufacturing the butterfly valve, and therefore, its structural safety satisfies the requirements of KEPIC MFA.

Characteristics of defect on segmental lining of TBM tunnel in operational subway (운용중인 국내 지하철 TBM터널의 세그먼트라이닝 결함특성 분석)

  • Choo, Jinho;Lee, DongHun;Noh, EunChul
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.24 no.1
    • /
    • pp.109-128
    • /
    • 2022
  • The precise inspection for safety and diagnosis (PISD) of tunnel has been conducted by the special act on safety control of public structures. However, the present assessment for the segmental lining of TBM tunnel has limitation such as: NDTs for integrity, segmental configuration for field inspection, and consideration for jacking system. Even if the number of TBM tunnel is less than 1% of enrolled facility in FMS, more attention to maintenance should be necessary due to its usage such as multi-use facility and national important facility. Compared to NATM tunnel, excavated by drilling and blasting and then installed lining by cast-in-place within 6~12 m, TBM tunnel is cut out ground by disk and cutter-bit and then assembled 7 pieces of precast segment, 1.2~1.4 m wide. Different features of design, construction, and maintenance should be considered to be more exact evaluation of TBM tunnel. The characteristics of defect is categorized and analyzed with 11 operational TBM tunnels in domestic subway. To be more comprehend various particular defects, foreign studies have been also adapted. Crack and leakage are categorized in 7 patterns. Breakage/spalling and corrosion are also grouped into 3 patterns. Patterned defects or damages are fed back in design, construction, and are useful guidelines for maintenance stage in future.

A Study on the Quality Analysis of Biodiesel for Ship's Fuel Utilization (바이오디젤의 선박 연료 활용을 위한 품질 분석)

  • Ha-seek Jang;Won-ju Lee;Min-ho Lee;Yong-gyu Na;Chul-ho Baek;Beom-seok Noh;Jun-soo Kim
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.29 no.4
    • /
    • pp.348-355
    • /
    • 2023
  • Biodiesel is known as an environmentally friendly neutral fuel, and a policy of obligatory mixing of a certain ratio is implemented on land. In this study, to verify the feasibility of using biodiesel as a ship fuel, component analysis, metal corrosion test, and storage stability test were performed on the mixing ratios of 0 %, 5 %, 10 %, and 20 % of marine diesel and biodiesel. Component analysis evaluated a total of eight factors including density, kinematic viscosity and flash point according to ISO 8217:2017 standards and the reliability of biodiesel through metal corrosion tests and storage stability tests under atmosphere temperature and harsh conditions (60 ℃) for 180 days. Results demonstrate that component analysis satisfied the ISO 8217:2017 standard in all biodiesel mixing ratios. Furthermore, as the biodiesel mixing ratio increased, the kinematic viscosity, density, and acid value increased and the sulfur content decreased. Metal corrosion rarely occurred in the case of carbon steel, iron, aluminum, and nickel, whereas in the case of copper, corrosion occurred under the influence of oxygen-rich biodiesel under the harsh conditions (60 ℃) of 20 % biodiesel mixture. As for storage stability, discoloration, sludge formation, and fuel separation were not visually confirmed.

Development and Field Application of Portable Tensioning System Using Segmental CFT Member (분절형 CFT부재를 이용한 이동식 프리텐션 제작대의 개발 및 활용)

  • Lee, Doo Sung;Kim, Tae Kyun;Lee, Sung Chul
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.34 no.3
    • /
    • pp.965-975
    • /
    • 2014
  • Pretension PSC (Prestressed Concrete) members are subjected to a certain limit of size as they are generally produced in the off-site plant and transferred to the site due to the large scale of the product on system. In this study, a portable pretensioning production system has been developed, which allow us to apply the pretension method on site. Considering that a 50m span PSC girder using the pretension method requires a pressing device to endure a large jacking force, the portable pretension production system has to ensure safety against such a large pretension jacking force. In this study, the portable pretensioning system to produce a 50m span pretension girder was manufactured by using CFT (Concrete Filled steel Tube) members. In order to understand the stability of the system and the behavior of the elements, a static loading test was conducted and the stability of the proposed portable pretensioning production system was confirmed. The developed portable pretension system was applied to several construction sites and was investigated the problems on site. During the pretension girder and slab members that was producted by this pretension system in construction site, it has be found the several advantages such as simple fabrication processes, reduction of prestress-loss, and a decrease of 15% compared with the fabrcation cost of post-tension girder. After due consideration of the problems, this portable pretension system will be improved.

Study on the optimal design of floor exhaust system using computational fluid dynamics for subway platform (수치해석을 활용한 승강장 바닥배기 시스템 최적화 연구)

  • Namgung, Hyeong-Gyu;Park, Sechan;Kim, Minhae;Kim, Soo-Yeon;Kwon, Soon-Bark
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.2
    • /
    • pp.443-449
    • /
    • 2017
  • The imbalance of air supply and the exhaust on subway platforms has led to the installation of platform screen doors in underground subway stations. This imbalance causes the accumulation of pollutants on the platform and loss of comfort due to the lack of ventilation. In this study, a floor exhaust system was optimized using computational fluid dynamics (CFD) and an optimization program. The optimized floor exhaust system was manufactured and tested experimentally to evaluate the particle collection efficiency. CFX 17.0 and HEEDS were used to analyze the flow field and optimize the principal dimensions of the exhaust system. As a result of the three-step optimization, the optimized floor exhaust system had a total height of 1.78 m, pressure drop of 430 Pa, and particle collection capability of 61%. A fine dust particle collection experiment was conducted using a floor exhaust system that was manufactured at full scale based on the optimized design. The experiment indicated about 65% particle collection efficiency. Therefore, the optimized design can be applied to subway platforms to draw in exhaust air and remove particulate matter at the same time.

Operation Case Analyses of Snow Removal Equipments using Information system Technologies (정보 시스템 기술을 적용한 제설장비 운영 사례 분석)

  • Kim, Hee-Jae;Kim, Geunyoung
    • Journal of the Society of Disaster Information
    • /
    • v.14 no.2
    • /
    • pp.154-164
    • /
    • 2018
  • Purpose: Recent climate change makes weather-related disasters such as summer storms, heavy rains, winter snowfall disasters, and extreme cold temperature increase in trend. Heavy snowfall disasters requires speedy response due to various effects to traffic flows, buildings, and infrastructure. Heavy snowfall disaster response of South Korea is insufficient, even though heavy snowfall disasters affect urban safety. There have been lack of policy studies for heavy snowfall disasters. Method: This research analyzes case studies and explores implications using Information system technologies to snow removal vehicles and equipments for speedy snow removal during the heavy snowfall disasters. Results: Information system technology attachment to snow removal equipments can identify locations of snow removal vehicles and equipments for emergency period to support snow removal of adjacent jurisdictions. Conclusion: Case studies of this research can be further used for efficient application of snow removal tools of local governments.