• Title/Summary/Keyword: 철도차량 대차

Search Result 97, Processing Time 0.02 seconds

Ice Melting Capacity Evaluation of Applicable Materials of De-icing Fluid for High Speed Railway Rolling Stock (고속철도차량용 제빙액으로의 적용가능물질에 대한 융빙성능 평가)

  • Park, Gyoung-Won;Lee, Jun-Ku;Lee, Hong-Ki
    • Applied Chemistry for Engineering
    • /
    • v.30 no.3
    • /
    • pp.384-388
    • /
    • 2019
  • In winter season, the snow and ice accretion on the bottom of the high speed railway rolling stock and boogie part has fallen at a high speed from the ballast section (gravel section for the transmission of the rolling stock load received by sleepers and fixing sleepers), causing the gravel to be scattered, thereby damaging the railway rolling stock structures and facilities. In order to solve these problems, the gravel scattering prevention net, manual de-icing, and movable hot air machine were used, but their efficiency was low. For the more efficient de-icing than ever before, an optimum material for de-icing fluid for high speed railway rolling stock was developed by evaluating the ice melting capacity, kinematic viscosity, evaporation of the material used as a chemical de-icing fluid. Four kinds of organic acid salts (sodium formate, sodium acetate, potassium formate and potassium acetate) and two different alcohols (propylene glycol, glycerol) were used as evaluation materials. Potassium formate, potassium acetate, and propylene glycol had similar ice melting capacities in the indoor test, but the propylene glycol showed the best ice melting capacity in spraying the system simulation test. This is because the kinematic viscosity of propylene glycol was 2.989029 St, which is higher than those of other materials therefore, it could stay longer on the ice and de-icing. In addition, potassium formate and potassium acetate were difficult to be used since the crystals precipitated and adversely affected the appearance of the rolling stock. The propylene glycol is the most optimum as an de-icing fluid for the high speed railway rolling stock.

An Evaluation of Fatigue Life and Strength of Lightweight Bogie Frame Made of Laminate Composites (경량 복합재 대차프레임의 피로수명 및 강도 평가)

  • Jeon, Kwang-Woo;Shin, Kwang-Bok;Kim, Jung-Seok
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.8
    • /
    • pp.913-920
    • /
    • 2011
  • We describe the evaluation of the fatigue life and strength of a lightweight railway bogie frame made of glass fiber/epoxy 4-harness satin-woven composites. To obtain the S-N curve for the evaluation of the fatigue characteristics of the composite bogie frame, we performed a tension-compression fatigue test for composite specimens with different stacking sequences of the warp direction, fill direction, and $0^{\circ}/90^^{\circ}$ direction. We used a stress ratio (R) of -1, a frequency of 5 Hz, and an endurance limit of $10^7$. The fatigue strength of the composite bogie frame was evaluated by a Goodman diagram according to JIS E 4207. The results show that the fatigue life and strength of the lightweight composite bogie satisfy the requirements of JIS E 4207. Given its weight, its performance was better than that of a conventional metal bogie frame based on an SM490A steel material.

Advanced Railway Vehicle Technology using Smart Materials (지능재료를 이용한 차세대 철도차량기술)

  • Kim, Jae-Hwan;Kang, Bu-Byoung;Kim, Kyeong-Jin;Chung, Heung-Chai;Choi, Sung-Kyu
    • Journal of the Korean Society for Railway
    • /
    • v.6 no.4
    • /
    • pp.252-256
    • /
    • 2003
  • Smart materials can adapt to changes of environment like living organs in nature such that they can maximize the performance and minimize the maintenance expense of engineering systems. Such materials have been paid attention ten years ago and applied in the area of industry, aerospace, transportation and civil structures. This paper summarizes smart material technology and shows some application examples in railway vehicles. Also, its future of smart material technology in railway vehicle technology is envisaged based on its possibility and practical aspect.

Analysis of Occurrence Tendency of Rail Force According to Running the Hanvit 200 Train on Transition Curve Track (한국형 틸팅차량 완화곡선 주행시 궤도작용력 발생경향 분석)

  • Park, Yong-Gul;Choi, Sung-Yong;Kim, Youn-Tae;Choi, Jung-Youl
    • Journal of the Korean Society for Railway
    • /
    • v.12 no.5
    • /
    • pp.678-686
    • /
    • 2009
  • A trial run of locally-developed tilting train has been in process on Chungbuk line since the test vehicle was first produced. For the system stabilization, interface verification among the systems including track, structure, catenary and signaling system, not to mention the rolling stock, is very crucial. Therefore, in this study, the dynamic rail force of the tilting (Hanvit 200), high-speed (KTX) and general (Mugunghwa) vehicle caused by driving in transition curve track was measured. And, it compared the tilting response with the other by using the measured rail force data in transition curve track, and then evaluated probability the range of load fluctuation for the variable dynamic vertical and lateral wheel load. As a result, a range of rail force by occurred a change of cant from the high-speed and general vehicle which had fixed bogie structure was distributed throughout small deviation. Otherwise, in case of the tilting train which was consisted of the pendulum bogie structure was distributed wide range about large deviation by changed of cant.

An Analysis of Running Stability of 1/5 Small Scaled Bogie on Small-Scaled Derailment Simulator (소형탈선시뮬레이터상에서의 1/5 축소대차 주행안정성 해석)

  • Eom, Beom-Gyu;Kang, Bu-Byoung;Lee, Hi-Sung;Song, Moon-Shuk
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.11
    • /
    • pp.1413-1420
    • /
    • 2012
  • To predict the dynamics behavior, running stability, etc. of a railway vehicle and to understand its physical characteristics, analytical methods are used for the testing and manufacturing of a scale model along with numerical simulations in developed countries (England, France, Japan, etc.). The test of the dynamics characteristics of full-scale models is problematic in that it is expensive and time-consuming because an entire large-scale test plant needs to be constructed, difficulties are involved in the test configuration, etc. To overcome these problems, an analytical study involving dynamics tests and computer simulations using a scaled bogie model that applies the laws of similarity was carried out. In this study, we performed stability analysis on a 1/5 small scaled bogie for parameters such as the running speed and carbody weight by using an analysis model. Furthermore, we verified the reliability by using a small-scaled derailment simulator and examined the dynamic characteristic of the 1/5 small scaled bogie.

Vehicle-Bridge Interaction Analysis of Railway Bridges by Using Conventional Trains (기존선 철도차량을 이용한 철도교의 상호작용해석)

  • Cho, Eun Sang;Kim, Hee Ju;Hwang, Won Sup
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.1A
    • /
    • pp.31-43
    • /
    • 2009
  • In this study, the numerical method is presented, which can consider the various train types and can solve the equations of motion for a vehicle-bridge interaction analysis by non-iteration procedure through formulating the coupled equations of motion. The coupled equations of motion for the vehicle-bridge interaction are solved by the Newmark ${\beta}$ of a direct integration method, and by composing the effective stiffness matrix and the effective force vector according to a analysis step, those can be solved with the same manner of the solving procedure of equilibrium equations in static analysis. Also, the effective stiffness matrix is reconstructed by the Skyline method for increasing the analysis effectiveness. The Cholesky's matrix decomposition scheme is applied to the analysis procedure for minimizing the numerical errors that can be generated in directly calculating the inverse matrix. The equations of motion for the conventional trains are derived, and the numerical models of the conventional trains are idealized by a set of linear springs and dashpots with 16 degrees of freedom. The bridge models are simplified by the 3 dimensional space frame element which is based on the Euler-Bernoulli theory. The rail irregularities of vertical and lateral directions are generated by the PSD functions of the Federal Railroad Administration (FRA). The results of the vehicle-bridge interaction analysis are verified by the experimental results for the railway plate girder bridges of a span length with 12 m, 18 m, and the experimental and analytical data are applied to the low pass filtering scheme, and the basis frequency of the filtering is a 2 times of the 1st fundamental frequency of a bridge bending.

Environmental Benefit Analysis for Railroad-related Projects (철도관련 사업에서의 환경편익 고려방안)

  • Nam, Doo-Hee;Huh, Hyun-Mu;Lee, Jin-Sun
    • Journal of the Korean Society for Railway
    • /
    • v.15 no.2
    • /
    • pp.179-184
    • /
    • 2012
  • Environmental impact is getting more attention in many feasibility studies for railroad-related projects and research items. For sustainable growth and green transportation, the benefits typically used for feasibility studies in railway-related projects, are composed mostly of economic criterions which is not considering growing attention on changing paradigm. Based on the analysis of current methodologies, improvements in estimating environmental impact especially on noise and pollution are suggested. Active steering bogie has been proposed to satisfy stabilizing and steering performance of railroad. This paper describes the feasibility study of the active steering bogie for a urban railway vehicle based on environment-related criteria.

Study on Improving the Environmental Performance of a Railway Vehicle through a Life Cycle Assessment of the Tilting Train (틸팅열차의 전과정평가를 통한 철도차량 환경성 개선방안연구)

  • Lee, Cheul Kyu;Kim, Yong-Ki;Lee, Jae-Young;Choi, Yo-Han;Kim, Cho-Young
    • Journal of the Korean Society for Railway
    • /
    • v.17 no.1
    • /
    • pp.1-6
    • /
    • 2014
  • Recent international environmental regulations are focused on reducing pre-contamination and on sustainable development prior to the usage stage of a product. The Environmental Performance Declaration is being used as a tool for quantifying the environmental performance of products, to reduce contamination in advance, and for advertising the results of railway vehicles in Europe. In this study, a life cycle assessment of the tilting train was conducted, the first such case study in Korea, according to the ISO 14025 standard and Korea EDP (Environmental Declaration of the Product) rule. As a result of the LCA, the life cycle carbon emission of the tilting train was determined to be $3.54{\times}10^7kgCO_2eq.$ which is higher than that of a European train. Also, the amount of $CO_2$ emission of the Mcp and car body is higher than that of the other car and bogie.

Dynamic Characteristic Analysis of 3-Piece Freight Vehicle with Wedge Friction Damper Using ADAMS (ADAMS를 이용한 3-Piece 마찰 웨지 댐퍼가 장착된 화차의 동특성 해석)

  • Lee, Chul-Hyung;Han, Myung-Jae;Park, Tae-Won
    • Journal of the Korean Society for Railway
    • /
    • v.20 no.3
    • /
    • pp.299-310
    • /
    • 2017
  • In this work, an independent-load friction wedge model was developed using the ADAMS/View program to predict the performance of a freight vehicle with a bogie employing a 3-piece friction wedge. The friction wedge model can generate friction according to lateral and vertical directions of the bolster. The developed friction wedge model was applied to the ADAMS/Rail vehicle model, and results of the dynamic analysis showed a critical speed of 210km/h. In the linear safety analysis, it was confirmed that the lateral and vertical limit of acceleration of the vehicle were satisfied based on UIC518. In the 300R curve line, the application speed was 70km/h, which was satisfied with the limit acceleration of the car-body and bogie based on UIC518. Also, the developed model satisfied the wheel loading, lateral force and derailment coefficient of "The Regulations on Safety Standards for Railway Vehicles"

Simulation of Vehicle-Structure Dynamic Interaction by Displacement Constraint Equations and Stabilized Penalty Method (변위제한조건식과 안정화된 Penalty방법에 의한 차량 주행에 따른 구조물의 동적상호작용 해석기법)

  • Chung, Keun Young;Lee, Sung Uk;Min, Kyung Ju
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.4D
    • /
    • pp.671-678
    • /
    • 2006
  • In this study, to describe vehicle-structure dynamic interaction phenomena with 1/4 vehicle model, nonlinear Hertzian contact spring and nonlinear contact damper are adopted. The external loads acting on 1/4 vehicle model are selfweight of vehicle and geometry information of running surface. The constraint equation on contact surface is implemented by the Penalty method with stabilization and the reaction from constraint violation. To describe pitching motion of various vehicles two types of the displacement constraint equations are exerted to connect between car bodies and between bogie frames, i.e., the rigid body connection and the rigid body connection with pin, respectively. For the time integration of dynamic equations of vehicles and structure Newmark time integration scheme is adopted. To reduce the error caused by inadequate time step size, adaptive time-stepping technique is also adopted. Thus, it is expected that more versatile dynamic interaction phenomena can be described by this approach and it can be applied to various railway dynamic problems with low computational cost.