• Title/Summary/Keyword: 철기제작 기술체계

Search Result 7, Processing Time 0.02 seconds

Metallurgical Analysis of Iron Artifacts Excavated from the Yeongsan River Basin (영산강유역 출토 철기유물의 미세조직 분석)

  • Lee, Jae-Sung;Kim, Soo-Ki
    • Journal of Conservation Science
    • /
    • v.18 s.18
    • /
    • pp.33-50
    • /
    • 2006
  • Around Yeongsan river basin, there are Yeongkwang Gundong, Muan Inpyeong Tombs, Muu Gusan-ri Tombs and Hampyeong Guksan remain from which a lot of iron artifacts were excavated. Among them, 6 iron artifacts were chosen, and their microstructures were analyzed. As a result, Iron artifacts were produced sponge iron by the low temperature reduction process and a part of microstructure have the possibility that steel made by decarburizing. And also, by tempering the parts which need high strength, the iron artifacts had high strength and by distributing the weakness of the tempered structure to the nearby untempered parts, their breaking was prevented and they had the durability. These skills were used then. Especially these skills were found to be used in the 2nd century by high skilled people because an iron axe excavated at Yeongkwang Gundong of 2nd century by the historical record showed that the skill was used. Also microstructures were found to show the possibility that the iron technology was inherited to the late 5th century. When producing iron artifacts made of sponge iron containing small amount of carbon, that was made by the production process repeating molding, carburizing, heat treatment and hammering.

  • PDF

New Perspectives on the Xiongnu Iron Works based on Archaeological Study (고고학 자료로 본 흉노의 철기문화 -중국 중원계 철기와의 비교를 중심으로-)

  • Moon, Jea-beom
    • Korean Journal of Heritage: History & Science
    • /
    • v.46 no.4
    • /
    • pp.64-77
    • /
    • 2013
  • In China, archaeological research on Xiongnu started later than in foreign countries. In the late $19^{th}$ century, several Russian archaeologists started to study Xiongnu's archaeological culture. However, since the late $20^{th}$ century, archaeological research of the Xiongnu in China quickly gained speed. The Xiongnu culture has been reported in Mongolia, northern steppe of China and eastern part of Eurasian steppe. Mainly, Xiongnu sites, dated from the late 2nd century B.C. to the 1st century A.D., are reported on the west side of Baikal Lake(Zabaikal), Mongolia and the Inner Mongolia of China. Based on the historical records and the archaeological remains, the North Xiongnu culture is defined to be the remains of Zabaikal, and the South Xiongnu culture the archaeological remains of Northern China. The expelled North Xiongnu, while fleeing to the western part of Eurasia, left traces of their own archaeological remains in southern Kazakhstan, Xinjiang of China, Altai, and finally appeared in the Europe as Huns. In order to adapt to the environment of northern steppe of China, Xiongnu used a nomadic economic system, giving uniqueness to its iron works. The most characteristic iron works of the Xiongnu is the highly-sophisticated iron weapons. Compared with the iron works of agricultural economic society, Xiongnu iron-works are short of production tools and various vessels. The "Nomadic type" iron works found in Xiongnu area date back to the Warring Country period or slightly later. Further research need to be conducted on "Nomadic type" Xiongnu iron works.

Metallurgical Investigation of the Iron Objects from Suchon-ri Site in Gongju (공주 수촌리유적 출토 철제유물의 금속학적 분석)

  • Cho, Hyun Kyung;Cho, Nam Chul;Lee, Hun
    • Journal of Conservation Science
    • /
    • v.30 no.3
    • /
    • pp.317-327
    • /
    • 2014
  • Iron objects excavated from the sites of Mahan and Baekje are dominated by swords, spearheads and arrowheads. Spearheads usually have a function of weapon and swords with ring pommel are considered fancy articles because of ornament in ring pommel. In Gongju Suchon-ri site, the central type and the local type of the Baekje tombs co-exist together. The sword with ring pommel, the long sword and spearheads were excavated. They are investigated metallurgically and we focused of their functions and manufacturing techniques. Solid carburizing technology and quenching of heat treatment applied the sword with ring pommel was presumed as fancy article in the late 4th century while these techniques didn't apply spearhead from same tomb. This informed that the central government of Baekje had high technology on iron manufacture in 4th century. In case of local gentry, they didn't apply this high technology to mass-produced spearheads, even though they had it. Thus, it is able to say the sword with ring pommel was applied techniques of the central government and spearheads, the weapons were applied techniques of local societies.

Ancient iron technologies as observed in the microstructures of iron sickles excavated from Icheon Seolbong fortress (이천 설봉산성 출토 철제 낫의 제작기술 연구)

  • Yu, Jae-Eun
    • Journal of Conservation Science
    • /
    • v.20
    • /
    • pp.67-80
    • /
    • 2007
  • Icheon Seolbong fortress is located in Saum-dong, Icheon, Gyeonggi-do Province that its date is founded as 4th century of Bakjae dynasty after excavation by Dankook university museum. Excavated artifacts show various kinds such as earthenwares, ceramics, metal artifacts and so on. Especially many iron artifacts were founded in where Bakjae earthenwares were found that it indicates iron artifacts were manufactured in Bakjae Dynasty. From 6 iron sickles, called Beollat and Millet, samples were taken to examine mircostructures and from the results used iron material, shape-forging, steel-making process, heat treatment were investigated. From this late 4th century Bakjae dynasty iron manufacture profess was established. From the result, different treatment were used in different area of the sickles according to the its use. Beollats were quenched in blade and it was used for special purpose that require Intensity. Millats did not have special treatment that it was used to cut rice plant and plant. Used material was steel, steel was previously made by certain steel-making process. It is formed to produce iron ware and the area where intensity is required heat treatment was employed to make it strong. From the investigation it is derived that iron ware manufacture process in Bakjae dynasty is steel making$\rightarrow$shape-forging$\rightarrow$and heat treatment.

  • PDF

Metallurgical Study on the Iron Artifacts Excavated from Sudang-ri Site in Geumsan (금산 수당리유적 출토 철제유물의 금속학적 연구)

  • Park, Hyung-ho;Cho, Nam-chul;Lee, Hun
    • Korean Journal of Heritage: History & Science
    • /
    • v.46 no.3
    • /
    • pp.134-149
    • /
    • 2013
  • The Sudang-ri Site in Geumsan is considered the historic site where Baekje dominated the inland traffic route to Gaya through Geumsan and Jinan in the 5th Century. This study identified the production techniques of iron by conducting an analysis of metallographical microstructure of the artifacts such as an iron sword and an iron sickle that were excavated in Sudang-ri Site, Geumsan, one of the regions ruled by Baekje, and tried to figure out the characteristics and the technical systems of Baekje's ironmaking around the 5th Century by comparing them with other iron artifacts produced around the same time. The analysis showed that various production techniques were applied to the artifacts excavated in Sudang-ri Site, Geumsan. Depending on the production techniques, they can be divided largely into three methods: the simple shape-forging method, the steel manufacture method after forging, and the steel manufacture & heat-treatment method after forging. The iron sickle from the stone chamber tomb No. 1, which was produced only through forging, is mostly composed of soft ferrite at both edges of the blade and at the rear making the use of the weapon impractical. From this fact, it is presumed that they were produced as burial objects or ceremonial accessories for the person buried. The iron axe from the outer stone coffin tomb No. 1 and the iron swords and sickle from the outer stone coffin tomb No. 12, which were produced through the steel manufacture method after forging such as carburizing, did not go through the heat treatment such as quenching, but applied different production processes to each part. Therefore, it is deemed that they were produced as daily tools for cultivation rather than burial objects or ceremonial accessories. The production techniques following the forging process - carburizing and heat treatment - can be found on the iron swords from the outer stone coffin tomb No. 5 and the outer stone coffin tomb No. 12. The sturdy structure of the blade part and the durable structure of the rear processed with heat are deemed to have been produced as weaponry and used by the person buried. Based on the analysis of the iron artifacts excavated from Sudang-ri Site in Geumsan, the characteristics of iron production techniques were investigated by comparing them with the artifacts from Yongwon-ri Site in Cheonan, Bongseon-ri Site in Seocheon, and Bujang-ri Site in Seosan that were made around the same time as the cluster of Baekje tombs examined by the metallographical microstructure analysis of this study. For the iron artifacts analyzed here, the changes in the techniques were investigated using the iron swords common in all of the tombs. In the case of the iron swords, it was identified the heat treatment technique called tempering was applied from the 4th Century.

Study on the Restoration of Ancient Smelting and Smithing Technologies in the Jungwon Area (재현실험을 통한 중원지역 고대 제련-단야기술의 공정별 특성 연구)

  • Lee, Eunwoo;Kwak, Byeongmoon;Kim, Eunji;Han, Youngwoo;Park, Chonglyuck
    • Journal of Conservation Science
    • /
    • v.33 no.6
    • /
    • pp.519-532
    • /
    • 2017
  • Studies on ancient ironmaking technologies are primarily based on archaeological surveys and scientific analysis data, and technological systems are examined by comparing the results of restorative experiments. In this study, to examine the ancient iron production technologies such as smelting and smithing in the Jungwon area, a restoration experiment was conducted based on archaeological data, and the iron and slag, etc. produced in the experiment were analyzed. Further, the changes in physicochemical properties due to the smelting of the raw material, specifically, iron ore were determined, and the smithing process, which involves fabrication of ironwares, was analyzed along with the characteristics of each step. In the case of smelting, increasing recovery rates and production of high-quality primary iron material were important for the following processes. For the iron bars produced through the smithing process, it was found that quality improvements made by reducing physical defects such as inclusions or gas holes were more important than the composition of the iron itself. The study also yielded comparative study data for various byproducts, such as smithing slag, which could be utilized in other ironmaking technology studies.

Material Characteristics of Forge Welded Bar and By-product through Reproduction Experiment to the Refining and Forge Welding Process (정련·단접 공정 재현 실험을 통해 생산된 소재 및 부산물의 재료학적 특성)

  • Oh, Min Jee;Cho, Hyun Kyung;Cho, Nam Chul;Han, Jung Uk
    • Journal of Conservation Science
    • /
    • v.34 no.2
    • /
    • pp.87-96
    • /
    • 2018
  • This study analyzed the influence of folding time on the forge welded bar and hammer scale produced using the traditional refining and forge welding reproduction experiment. In the case of the forge welded bar, increasing the forging time decreased the percentage of impurities and porosity from 26.09% to 1.8%. Additionally, the hardness increased by an average of 36.88 HV. In other words, the microstructure gradually became more precise. For the hammer scale, the amount of T Fe increased with forging time. X-ray diffraction analysis revealed the presence of quartz, fayalite, $w{\ddot{u}stite$, and magnetite. The amount of quartz decreased as the forging time increased. In addition, as the forging time increased, the granular $w{\ddot{u}stite$ changed into a cohesive, long, white band. The results provide information on the characteristics of the forge welded bar and hammer scale produced in the refining and forging process. This information can be used as technical data for ancient steel making processes as well as for future technological systems.