• Title/Summary/Keyword: 철근 응력

Search Result 507, Processing Time 0.02 seconds

Mechanical Properties and Stress-Strain Model of Re-Bars Coldly Bent and Straightened (굽힌 후 편 철근의 기계적 성질과 응력-변형률 모델)

  • Chun, Sung-Chul;Tak, So-Young;Ha, Tae-Hun
    • Journal of the Korea Concrete Institute
    • /
    • v.24 no.2
    • /
    • pp.195-204
    • /
    • 2012
  • In the construction of high-rise buildings, bent re-bars are manually straightened to connect slabs to core-walls, which are usually cast before floor structures. During cold bending and straightening of re-bars, plastic deformation causing work hardening, Bauschinger effect and aging hardening is unavoidable. Tensile tests of coldly bent and straightened re-bars were conducted with test parameters of grade, diameter, and bend radius of re-bars as well as age between bending and straightening. Test results showed that proportional limits were lower and strain hardening occurred without yield plateaus. Inside and outside of re-bars with compression and tension deformations, respectively, during bending showed lower yield points due to Bauschinger effect and no yield plateaus due to work hardening, respectively. When re-bar grade was higher, yield point became significantly lower where Grade 400 re-bars had yield strengths lower than specified yield strength of 400 MPa. Because the surface of re-bar has higher strength than the core of re-bar, Bauschinger effect was more obvious for higher-grade re-bars. When age between bending and straightening was greater, yield strength increased and elongation decreased (i.e. embrittlement occurs). Using measured data, stress-strain relationship for straightened re-bars was developed based on Ramberg-Osgood model, which can be used to evaluate stiffness of joints when straightened re-bars are applied.

Prying Action of Spliced Reinforcements in Tension (인장 겹침이음에서 프라이 거동의 영향)

  • Chun, Sung-Chul;Choi, Dong-Uk;Ha, Sang-Su;Oh, Bo-Hwan
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.1085-1088
    • /
    • 2008
  • Splice of reinforcement is inevitable in reinforced concrete structures and, generally, lap splices are used. Lap length for tension splice is determined from development length in tension. The development length is calculated from an experimental model which was based on data of tests on anchorage and splice. Longitudinal reinforcements in flexural members are deformed and, therefore, prying action happens in spliced reinforcements unlike anchored reinforcements. The prying action induces tensile stress in cover concrete and this tensile stress plays the same role to a circumferential tensile stress caused by bond. Because splitting failure is assumed to occur when the summation of tensile stresses caused by the prying action and the bond is equal to the tensile strength of the concrete, the prying action reduces the bond strength of spliced reinforcements. A theoretical model for the prying action is developed and effects of the prying action on the bond strength are assessed. The tensile stress by the prying action is proportional to tensile strength and modulus of elasticity of reinforcements. In addition, the tensile stress is inversely proportional to spacing of reinforcements. Consequently, longer splice length is required for spliced reinforcements with small spacing in flexible members.

  • PDF

The Effect of Mild Tensile Reinforcement and Effective Prestress on the Flexural Performance of the Prestressed Lightweight Concrete Beams with Unbonded Tendons (비부착 프리스트레스트 경량 콘크리트 보의 휨 거동에 대한 부착 철근과 유효 프리스트레스의 영향)

  • Mun, Ju-Hyun;Yang, Keun-Hyeok;Byun, Hang-Yong
    • Journal of the Korea Concrete Institute
    • /
    • v.23 no.5
    • /
    • pp.617-626
    • /
    • 2011
  • Seven post-tensioned lightweight concrete (LWC) beam specimens were tested under a symmetrical two-point top loading system. The parameters investigated were the amounts of mild longitudinal reinforcement and effective prestressing. The design compressive strength and dry density of the LWC tested were 30 MPa and 1,770 $kg/m^3$, respectively. Similar to post-tensioned normal weight concrete (NWC) beams, the crack propagation and stress increase of the unbonded tendons were significantly affected by the amounts of mild longitudinal reinforcement and effective prestressing. With the increase in the amounts of mild longitudinal reinforcement and effective prestressing, the serviceability and flexural capacity of the beams were enhanced whereas the stress increase in the unbonded tendons decreased. To control the crack width in post-tensioned LWC beams, a minimum amount of mild longitudinal reinforcement specified in ACI 318-08 provision is required. The flexural behavior of post-tensioned LWC beams and stress increase of the unbonded tendons could be rationally predicted by the proposed non-linear two-dimensional analysis. On the other hand, ACI 318-08 flexure provision was too conservative about the post-tensioned LWC beams.

Flexural Characteristics of Reinforced Polymer Concrete T-Beams Strengthened with GFRP (GFRP 보강 철근 폴리머 콘크리트 T형 보의 휨 특성)

  • Jin, Nan-Ji;Hwang, Hae-Geun;Yeon, Jung-Heum
    • Journal of the Korea Concrete Institute
    • /
    • v.24 no.5
    • /
    • pp.585-596
    • /
    • 2012
  • In this study, the flexural characteristics of reinforced polymer concrete T-beams strengthened with GFRP, typically used for bridges and parking structures, are investigated. A method to determine the flexural failure mode of reinforced polymer concrete T-beams comprised of compression failure (CF), tension failure (TF), and fiber sheet failure (FF) for different levels of GFRP strengthening is proposed. Moreover, the present study provides a formula to calculate the design flexural strength for each failure mode. In reinforced polymer concrete T-beams strengthened with GFRP, an ideal failure mode can be achieved when the failure occurs in the following order: 1) yield of steel reinforcement, 2) failure of GFRP, and 3) compression failure of concrete. In the case of FF mode, due to GFRP failure before the polymer concrete crushing in compression region, a concept of equivalent rectangular block based on the ultimate limit state of concrete should not be used. Thus, this study suggests an idealized stress-strain curve for polymer concrete and finds parameters for stress block, ${\alpha}$ and ${\beta}$ based on the strain distribution in polymer concrete. Furthermore, the present study suggests an aspect ratio of 2.5 by examining the compressive stress distribution and design flexural strength characteristics for different aspect ratio of T-beams. This study also provides a design flexural strength formula, and validates its acceptability based on experiment and theoretical analysis.

Mechanical Performance Evaluation of Rolling Thread Steel Rebar Connection with Taper type Coupler (변단면 전조 가공 철근이음 연결방법의 성능 평가)

  • Jeong, Jin-Hwan;Kim, In-Tae;Kim, Tae-Jin;Lee, Myung-Jin;Ahn, Jin-Hee
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.19 no.2
    • /
    • pp.40-51
    • /
    • 2015
  • In reinforced concrete structure, rebar connection method should be considered because of its structural role to resist the tensile stress and its structural load transmission with concrete in the concrete structure. Lapped splice and mechanical sleeve type connector have been traditionally used to connect rebar in the concrete structures. In this study, to examine the mechanical and failure behaviors of rebar bar connected by taper type coupler in the concrete member depending on connection type and condition, tensile tests of steel rebar with taper type coupler and flexible loading tests of concrete beams were conducted. Its tensile strength and flexible strength of the rebar connected by taper type coupler were compared and evaluated by mechanical behaviors of rebar. From this study, steel rebar connected by taper type coupler showed it has similar mechanical performance comparing with unconnected rebar, thus taper type coupler can be used in the rebar fabrication of reinforced concrete structure.

Shear Failure Modes of Reinforced Concrete Members with High-Strength Materials (고강도 재료가 사용된 철근콘크리트 부재의 전단파괴모드)

  • Lee, Jung-Yoon;Kim, Kyung-Won
    • Journal of Korean Association for Spatial Structures
    • /
    • v.6 no.2 s.20
    • /
    • pp.53-60
    • /
    • 2006
  • The shear failure modes of reinforced concrete members using high-strength materials (high-strength concrete and high-strength steel) are different to those of reinforced concrete members using normal-strength materials. The reinforced concrete members using high-strength materials are inclined to fail due to concrete crushing before the shear reinforcing bar reaches its yield strength. This paper presents an evaluation equation to calculate the maximum shear reinforcement ratio based on the material stresses and strains when the reinforced concrete members fail in shear. The maximum shear reinforcement ratio calculated by the proposed equation increases as the compressive strength of concrete increases. Test results of 97 reinforced concrete members reported in the technical literatures are used to check the validity of the proposed equation. The comparison between the test results and the ratio calculated using the proposed equation indicated that the shear failure modes depended on the interaction between the amount of shear reinforcement and the compressive strength of concrete.

  • PDF

Flexural Behavior of Ultra High Performance Fiber Reinforced Concrete Segmental Box Girder (초고강도 섬유보강 콘크리트 분절형 박스 거더의 휨거동)

  • Guo, Qingyong;Han, Sang-Mook
    • Journal of the Korea Concrete Institute
    • /
    • v.26 no.2
    • /
    • pp.109-116
    • /
    • 2014
  • The flexural behavior test of UHPC segmental box girder which has 160 MPa compressive strength and 15.4 m length was carried out. The effect of steel fibers in combination with reinforcing bars on improving the ductile performance of UHPC box girder was evaluated by comparing the flexural behavior of the UHPC segmental box girders made by the two kinds of mixing portion. The test variables are volume fraction of steel fibers and the arrangement of reinforcing bars. The behavior of UHPC box girder BF2 composed of 1% volume fraction of steel fibers and longitudinal reinforcing bars in web and upper flange with stirrup showed the similar ductile behavior with the girder BF1 composed of 2% volume fraction without stirrup in elastic stress region. But BF1 had the better stiffness and showed the more ductile behavior in inelastic stress region. Segmental interfaces of UHPC box girder have not any crack and slide until the final flexural collapse load.

Shear Strength Enhancement of Hollow PHC Pile Reinforced with Infilled Concrete and Shear Reinforcement (내부충전 콘크리트와 전단철근을 이용한 중공 PHC말뚝의 전단보강 효과)

  • Hyun, Jung-Hwan;Bang, Jin-Wook;Lee, Seung-Soo;Kim, Yun-Yong
    • Journal of the Korea Concrete Institute
    • /
    • v.24 no.1
    • /
    • pp.71-78
    • /
    • 2012
  • In order to improve the shear strength of conventional pre-tensioned spun high strength concrete (PHC) pile, concrete-infilled composite PHC (ICP) pile, a PHC pile reinforced by means of shear reinforcement and infilled concrete, is proposed. Two types of specimens were cast and tested according to KS (Korean Standards) to verify the shear strength enhancement of ICP pile. Based on the test results, it was found that the KS method was not suitable due to causing shear failure of ICP pile. However, shear strength enhancement was clearly verified. The obtained shear strength of the ICP pile was more than twice that of conventional PHC pile. In addition, the shear strength of ICP pile reinforced with longitudinal reinforcement was estimated to be more than 2.5 times greater than that of conventional PHC pile. The allowable shear force of ICP pile, which was determined by the allowable stress design process, indicated a large safety factor of more than 2.9 compared to the test results.

Shear Behavior of Reinforced Concrete Beams Strengthened with CFRP Strips (탄소섬유판 (CFRP Strip)으로 보강된 철근콘크리트 부재의 전단거동)

  • Lim, Dong-Hwan;Nam, Min-Hee
    • Journal of the Korea Concrete Institute
    • /
    • v.20 no.3
    • /
    • pp.299-305
    • /
    • 2008
  • The main goal of this study was to examine the shear behavior of reinforced concrete beams strengthened with CFRP strups. Seven rectangular beams were tested. The test variables were the configuration types, spacing length of CFRP strips and the amount of reinforced stirrups bars. From this experimental study, the shear capacity of beams strengthened with CFRP increased significantly compared to the beam without CFRP strip. Maximum increase of ultimate shear strength was found about 100% more than that of the beam without a CFRP strip and the CFRP strips attached in the shear region can resist the occurrence of the initial shear cracks and the propagation of major shear cracks. In this test, most of the shear strengthened beams failed suddenly due to the debonding of CFRP strips. A calculation of the shear strength of reinforced beams strengthened with CFRP strips based on the effective stresses was conducted and the comparisons were made with the test results.

Improvement and Evaluation of Structural Performance of Reinforced Concrete Beam using High Ductile Fiber-Reinforced Mortar with Ground Granulated Blast Furnace Slag (고로슬래그미분말을 혼입한 고인성섬유 복합모르타르를 이용한 철근콘크리트 보의 구조성능 평가 및 개선)

  • Ha, Gee-Joo;Lee, Dong-Ryul
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.14 no.6
    • /
    • pp.142-152
    • /
    • 2010
  • In this study, eleven reinforced concrete beams, without stirrup, using high ductile fiber-reinforced mortar with ground granulated blast furnace slag(SHF Series, SHFSC Series) and standard specimens without or with stirrup(SSS, BSS) were constructed and tested under monotonic loading. Experimental programs were carried out to improve and evaluate the shear performance of such test specimens, such as the load-displacement, the failure mode, the maximum strength, and shear strength. All the specimens were modeled in scale-down size. Test results showed that test specimens(SHF Series, SHFSC Series) was increased respectively the shear strength carrying capacity by 26%, 20% and the ductility capacity by 5.27, 5.75 times in comparison with the standard specimen without stirrup(SSS). And the specimens(SHF Series, SHFSC Series) showed enough ductile behavior and stable flexural failure.