• Title/Summary/Keyword: 철근

Search Result 4,716, Processing Time 0.029 seconds

Maximum Shear Reinforcement of RC Beams using High Strength Concrete (고강도 콘크리트를 사용한 RC보의 최대철근비)

  • Lee, Jung-Yoon;Hwang, Hyun-Bok
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.839-842
    • /
    • 2008
  • The ACI 318-05 code requires the maximum amount of shear reinforcement in reinforced concrete (RC) beams to prevent possible sudden shear failure due to over reinforcement. The design equations of the maximum amount of shear reinforcement provided by the current four design codes, ACI 318-05, CSA-04, EC2-02, and JCI-99, differ substantially from one another. The ACI 318-05, CSA-04, and EC2-02 codes provide an expression for the maximum amount of shear reinforcement ratio as a function of the concrete compressive strength, but Japanese code does not take into account the influence of the concrete compressive strength. For high strength concrete, the maximum amount of shear reinforcement calculated by the EC2-02 and CSA-04 is much greater than that calculated by the ACI 318-05. This paper presents the effects of shear reinforcement ratio and compressive strength of concrete on the maximum shear reinforcement in reinforced concrete beams. Ten RC beams having various shear reinforcement ratio were tested. Although the test beams were designed to have much more amount of shear reinforcement than that required in the ACI 318-05 code, all beams failed due to web concrete crushing after the stirrups reached the yield strain.

  • PDF

An Experimental Study on the Flexural Capacity of RC Beams with High-Strength Reinforcement (고장력 철근이 배근된 RC보의 휨성능에 관한 실험적 연구)

  • Hong, Geon-Ho;Tak, So-Young;Jo, Jae-Yeol;Lee, Jae-Hun
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.289-292
    • /
    • 2008
  • This paper studied experimentally on the structural performance and serviceability of RC beams with high-strength reinforcing bars. Following to the previous research, high-strength reinforcing bars have an negative effect on the deflection and crack depth. But, there are advantages about reducing amount of reinforcement than normal-strength reinforcing bars. So, the purpose of this paper is to analyze the effect of flexural performance on the beams with high-strength reinforcing bars. Three specimens were tested, and the main variable was the yield strength of the reinforcements; SD400, SD600 and SD700. Experimental results shows that the stiffness of members reduced when apply to high-strength reinforcement and equal reinforcement ratio. But the flexural strength of members increased to proportion to the strength and amount of reinforcement. Also, when high-strength reinforcement used, serviceability aspect do not appear to be affected because there is no change for crack number and maximum crack width.

  • PDF

Bond Strength of Grout-Filled Splice Sleeve Considering Effects of Confinement (구속효과를 고려한 모르타르 충전식 철근이음의 부착강도)

  • Kim, Hyong-Kee;Ahn, Byung-Ik
    • Journal of the Korea Concrete Institute
    • /
    • v.15 no.4
    • /
    • pp.615-622
    • /
    • 2003
  • The purpose of this study is to propose the more reasonable equation of bond strength of grout-filled splice sleeve. To accomplish this objective, total 60 full-sized specimens were tested under monotonic loading. The experimental variables are compressive strength of mortar, embedment length and size of reinforcing bars. Following conclusions are obtained; 1) If the adequacy of existing equations which estimate the bond strength of grout-filled splice sleeve are investigated, they underestimate the bond strength of grout-filled splice sleeve by 8-18%. Also the existing equations have a tendency to underestimate with decrease in the embedment length of reinforcing bars. 2) From the test result of bond failure, the equation which estimates the confining pressure of grout-filled splice sleeve was proposed by making multiple regression analyses of which independent variables are embedment length of reinforcing bars and compressive strength of mortar. This equation predicted the measured bond capacity of this test more accurately than existing equations and eliminated the deviation according to the embedment length of reinforcing bars.

An Experimental Study on the Deflection Estimation of RC Flexural Member by Corrosion of Reinforcement (철근 부식에 따른 철근콘크리트 휨 부재의 처짐 산정에 대한 실험적 연구)

  • Kim, Jee-Sang;Moon, Hyeong-Gab
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.9 no.2
    • /
    • pp.143-151
    • /
    • 2021
  • Flexural test of reinforced concrete beam with corroded reinforcement were performed to measure the deflection, curvature and cracking moment for various bar diameter and amounts of corrosion. The amounts of corrosion are varied from 0% to 10% by weight and the bar diameters are chosen as 10mm, 13mm, and 19mm. The changes in reinforcement diameter do not affect the flexural behaviors significantly according to this experiment. If the amounts of corrosion is greater than 2%, the deflection and curvature of the beam increased and the cracking moment decreased. It means that the lower amounts of corrosion does not result structural damage in flexural member significantly as in direct tensile test. A modification factor considering an effect of amounts of corrosion is proposed based on the experiment, which can be used to determine the deflection of reinforced concrete beam with corroded reinforcement.

Analysis of Crack characteristic on Concrete Cover for Subway Box Structure Due to Reinforcement Corrosion (철근부식으로 인한 지하철 박스구조물의 콘크리트 피복층 균열특성 분석)

  • Choi, Jung-Youl;Shin, Dong-Sub;Chung, Jee-Seung
    • The Journal of the Convergence on Culture Technology
    • /
    • v.8 no.6
    • /
    • pp.727-732
    • /
    • 2022
  • Applying the calculated cross-sectional reduction due to the corroded rebar investigated in the field to the numerical analysis model, the damage pattern and delamination of concrete in the field showed a tendency relatively similar to the numerical analysis results. It was analyzed that when the expansion pressure due to corrosion of the reinforcing bar is greater than the tensile stress of the concrete, cracks are generated and the concrete cover can be fracture. As a result of this study, the correlation between the corrosion rate of reinforcing bars and the crack occurrence of the concrete cover of the subway box structure was verified based on the numerical analysis and field test results. To prevent rebar corrosion, the corrosion rate can be reduced by applying rust prevention to the reinforcing bar and changing the material. In the case of exposed to a corrosive environment, the tensile strength of the concrete is improved by adjusting the concrete compressive strength to secure durability against the expansion pressure caused by the corroded rebar.

Bond of Deformed Bars to Concrete : Effects of Confinement and Strength of Concrete (철근 콘크리트 보-기둥 접합부의 부착거동에 대한 콘크리트 강도 및 보강철근의 효과)

  • 최기봉
    • Magazine of the Korea Concrete Institute
    • /
    • v.3 no.2
    • /
    • pp.115-121
    • /
    • 1991
  • Slippage of beam longitudinal reinforcement at beam-column connections is an important cause of damage to reinforced concrete frames under static and dynamic loads, This paper summarizes the results of an experimen¬tal study on the effects of confinements and compressive strength of concrete on the local bond stress-slip cha¬racteristics of deformed bars. I t is concluded from experimental results that, as far as the bond splittmg cracks are restrained by the vertical column reinforcement, confinement of concrete by transverse reinforcement has insignigicant direct effect on the local bond behavior. The ultimate bond strength, however, Increases pro¬portionally with the square root of concrete compressive strength. An empirical model was developed for local bond st ressslip relationslip of deformed bars in confined concrete of different compressive strengths.

The Study on Development of Automatic Main Placing Macro of Beams for RC Structures based on BIM (BIM기반 철근콘크리트 보의 주철근 자동배근 매크로 생성 및 구현에 관한 연구)

  • Cho, Young-Sang;Shin, Tae-Song;Hong, Sung-Uk;Lee, Je-Hyuk;Jang, Hyun-Suk
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2010.04a
    • /
    • pp.537-540
    • /
    • 2010
  • 본 논문에서는 보의 주철근을 대상으로 건물정보모델링(BIM, Building Information Modeling)통합 설계 시스템 상에서 배근 설계 및 철근 형상화 알고리즘을 구축하여 자동배근 시스템(ARPM, Automatic Reinforcement Placing Module)을 개발하는데 목적이 있다. 구조분야에서의 BIM 프로세스는 정보호환체계를 구축하는 과정에 있으며, 철골 구조 프로세스의 경우 표준 호환 포맷을 이용하여 원활한 정보 호환 체계를 유지하고 있다. 하지만, 철근 콘크리트의 BIM 통합 설계 시스템은 철근 배근정보의 생성과 호환이 원활하지 않아 표준 정보 호환 체계가 구축되지 않은 실정이다. 기존 2차원 기반 프로세스에서는 철근 배근 설계에 있어 표준화된 기준에 따른 배근이 아닌 관행이나 일률적인 배근 지침에 따라 배근 상세를 정하고 있고, 2차원 배근 설계 결과만 제시하고 있어 상호 호환 가능한 철근 배근 정보데이터가 생성되지 않는다. 철근 콘크리트 구조에서의 철근 배근 정보를 생성하고 BIM 통합 구조 설계시스템에서의 정보 호환성을 확보하기 위해, 보의 주철근을 대상으로 구조 해석 데이터베이스와 통합 설계 플랫폼 간의 호환 시스템을 생성하고, 콘크리트학회 콘크리트 구조설계기준에 따른 배근 설계 및 철근 형상화 알고리즘을 구축하여 자동배근시스템(ARPM)을 개발하는데 목적이 있다.

  • PDF

Real-time Rebar Injection Endpoints Tracking Method to Improve the Straightness of Rebars (철근 직진도 개선을 위한 실시간 철근 사출 끝점 추적 방법)

  • Kim, Jong-Sik;Kang, Dae-Seong
    • The Journal of Korean Institute of Information Technology
    • /
    • v.17 no.8
    • /
    • pp.75-83
    • /
    • 2019
  • In this paper, we propose a method that can detect and trace the end point of real - time reinforcement steel to various environmental conditions of industrial field by using Median flow and Depth information. We proposed a method to derive two steel end points by using Median filter, Binarization, Morphology, and Blob algorithm on image depth information. The coordinates of the final position were determined by comparing the coordinates of the reinforcement steel endpoints detected in the Depth image and the position tracking coordinates of the reinforcement steel using Median Flow. As a result, when the existing Median Flow method was used, the success rate of the final position determination of reinforcement steel of 75% was increased to 95% when the Depth of reinforcement steel was used.

Field Pull-out Test and Numerical Analysis for Multi-rebar Nail (다철근 네일의 현장인발시험 및 수치해석)

  • Jeon, Sang-Soo;Kim, Doo-Seop;Jang, Yang-Won
    • Journal of the Korean Geotechnical Society
    • /
    • v.24 no.8
    • /
    • pp.43-52
    • /
    • 2008
  • In this study, the verification test and creep test for both a single-rebar nail and a multi-rebar nail are carried out to investigate a tensile strength for both nails. The adhesion effects between a rebar and a cement grout, a mobilized frictional force induced by pull-out load, and load transfer characteristics are examined. The results obtained from the field pull-out tests and from the numerical analysis using $FLAC^{2D}$ which is one of the programs developed based on the finite difference method are analyzed and compared for a single-rebar nail and a multi-rebar nail. The field pull-out test results for a multi-rebar nail relative to a single-rebar nail show that a tensile failure load is relatively large and the pull-out loads are well transferred to the ground in deep depth.

RC Elements Under Cyclic Loading (반복하중을 받는 철근 콘크리트 요소)

  • 최석환
    • Computational Structural Engineering
    • /
    • v.11 no.2
    • /
    • pp.57-69
    • /
    • 1998
  • 이번 기사에서는 반복하중 하에서의 철근 콘크리트 구조물의 비선형 유한요소해석에 관한 연구를 정리한 CEB 보고서를 소개하고자 한다. 보고서의 분량이 190쪽으로 번역기사의 내용으로는 많지만, 매우 유익한 내용이라 생각되어 선택하였으며, 구체적인 수식은 생략하고 전반적인 내용의 흐름을 위주로 정리했다. 이 보고서의 내용은 콘크리트의 압축거동, 콘크리트의 인장거동, 철근의 거동, 콘크리트와 철근의 부착, 철근과 콘크리트 혹은 콘크리트와 콘크리트의 경계면 거동, 그리고 철근콘크리트의 유한요소모델링 등으로 이루어져 있다.

  • PDF