• Title/Summary/Keyword: 철근탐사

Search Result 43, Processing Time 0.033 seconds

Measurements and Data Interpretation for the Detection of Steel Bars and Delamination inside Concrete (콘크리트내의 철근 및 공동탐사를 위한 측정과 분석)

  • Rhim, Hong-Chul;Park, Ki-Joon;Lee, Soong-Jae
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.20 no.4
    • /
    • pp.305-313
    • /
    • 2000
  • To determine detection capabilities of locating steel bars and delamination inside concrete, commercially available nondestructive testing (NDT) equipments have been tested. The equipments include two radar systems and two electromagnetic method systems. The inclusions are a 19 mm diameter steel bar and 50 mm thick delamination embedded at different cover depths from the surface of concrete specimens. For the steel bar, attempts were made to determine the size of the bars by changing the diameter of the bars. A sample result of measuring horizontal spacing between doubly reinforced bars is presented in this paper. Experimental results on various measurement cases are discussed. Application of numerical modeling technique for the simulation of radar measurements and improved output display of radar measurements are also presented.

  • PDF

Measurment of Horizontal rebar Spacing in Concrete Specimens Using Radar (레이더를 이용한 콘크리트 시편 내 수평 배근 간격 탐사)

  • 임홍철;김우석
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.4 no.2
    • /
    • pp.65-72
    • /
    • 2000
  • 콘크리트 구조물이 지진 등으로 손상을 입었을 때 그 내부 상태를 파악하는 일은 구조물의 안전성 판단에 필요한 중요 과정중 하나이다 손상도 파악에 사용되는 비파괴 검사 방법 중 레이더법은 현재 콘크리트 부재의 두께와 매립된 철근 및 공동 탐사에 적용되고 있다 레이더법은 다른 비파괴 검사 방법에서와 마찬가지로 측정된 신호의 처리와 해석에 따라 그 결과가 좌우된다 . 이논문에서는 상용 레이더 시스템에서 얻어지는 화상 데이트터를 개선하는 방법을 개발하여 철근이 매립된 콘크리트 시편에 적용하였다 실험에 사용된 기편의 크기는 1,000mm(길이)$\times$600mm (폭) $\times$140mm(두께) 이고 철근의 매립깊이는 표면으로부터 철근 중심까지 60mm 이다 레이더 실측 실험에서 철근의 수평배근 간격을 60 90, 120, 150 mm 로 변화시켜 간격탐사가능성을 시험하였다 결과적으로 상용 시스템에 비해 샹상된 판별효과를 나타냈으며 배근 간격이 90, 120, 150mm 인 시편에서 그 간격을 정확히 찾아내었다.

  • PDF

A Study on the Reliability of Detecting Reinforcement Embedded in Concrete in Various Factors Using Electromagnetic Induction Method and Electromagnetic Wave Method (전자기유도법과 전자파레이더법을 이용한 각종인자에 따른 철근탐사의 신뢰성에 관한 연구)

  • Kim, Jong-Ho;Oh, Kwang-Chin;Park, Seung-Bum
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.12 no.4
    • /
    • pp.179-186
    • /
    • 2008
  • Probing inside of concrete structures is one of the important steps in assessing condition of the structure. For the assessment, electromagnetic induction method and electromagnetic wave method are currently applied to the measurement of cover depth, and the detection of reinforcement embedded in concrete. To determine detection capability of locating reinforcement embedded in concrete, commercially available nondestructive testing (NDT) equipments have been tested. The equipments include electromagnetic wave system and electromagnetic induction system. In the tests, nine concrete specimens which have the dimensions of 1,000mm(length))${\times}$300mm(width) with thickness varying from 125mm to 150mm are used. The reinforcement are located at 45, 60, 100mm depth from the concrete surface. Horizontal reinforcement spacing has been set over 100mm. From the outcome, it is shown that error is increased as the diameter of reinforcement enlarge in case of using electromagnetic induction method. In case of using electromagnetic wave method, the detection of reinforcement embedded in deep is good in the view of reliability because of using the relative permittivity on the real cover depth.

A Study on the Error Rate of Non-destructive Rebar Detection Under Different Environmental Factors (환경적 요인에 따른 비파괴 철근 탐사의 오차율에 관한 연구)

  • Kang, Beom-Ju;Kim, Young-Hwan;Kim, Young-Min;Park, Kyung-Han;Oh, Hong-Seob
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.9 no.4
    • /
    • pp.506-513
    • /
    • 2021
  • The durability and safety of reinforced concrete structures significantly depend on the reinforcement conditions, concrete cover thickness, cracks, and concrete strength. There are two ways to accurately determine the information on reinforcing bars embedded in concrete - the local destructive method and the non-destructive rebar detection test. In general, the non-destructive rebar detection tests, such as the electromagnetic wave radar method, electromagnetic induction method, and radiation method, are adopted to avoid damage to the structural elements. The moisture content and temperature of concrete affect the dielectric constant, which is the electrical property of concrete, and cause interference in the non-destructive rebar detection test results. Therefore, in this study, the effects of the electromagnetic wave radar method and electromagnetic induction method have been analyzed according to the temperature and surface moisture content of concrete. Due to the technological advancement and development of equipment, the average error rate was less than 5% in the specimens at 24℃, irrespective of their operating principles. Among the tested methods, the electromagnetic induction method showed very high accuracy. The electromagnetic wave radar method indicated a relatively small error rate in the dry state than in the wet state, and exhibited a relatively high error rate at high temperatures. It was confirmed that the error could be reduced by applying the electromagnetic wave radar method when the temperature of the probe was low and in a dry state, and by using the electromagnetic induction method when the probe was in a wet state or at a high temperature.

An Experimental Study on Principal Factors for Non-destructive Test of Detecting Steel bars (비파괴 철근탐사의 주요 영향인자에 관한 실험적 연구)

  • Oh, Kwang Chin;Kim, Jong Ho;Rhee, Jong Woo;Lee, Yun Hyang
    • Journal of Korean Society of societal Security
    • /
    • v.3 no.1
    • /
    • pp.25-32
    • /
    • 2010
  • Detecting rebars in side the concrete structures is one of the important steps in assessing condition of the structure. In order to determine the detection capability of locating rebars inside the concrete, two types of equipments, which use radar system and electromagnetic system each, were tested. Four concrete specimens which have the dimensions of $1,000mm(length){\times}300mm(width)$ with different thickness and diameter of steel bars were applied. A series of testing was achieved after drying in air for 90 days, immersed in water for 3, 24, 48 hour and 28 day. From the experimental outcome, it is shown that error is increased as the diameter of rebar enlarge in case of electromagnetic method. In case of radar method, the detection of embedded rebars in deep is good in the view of reliability. As moisture content increase from 3.6% to 5.5%, the relative permittivity of concrete test specimens show tendency to increase, too. Therefore, it is shown that moisture content is one of the major contributing factors to determine the relative permittivity. And the relative permittivity regression equation is suggested.

  • PDF

Assessment of Accuracy for the Rebar Detecting Device at Reconstruction Site (재건축현장 철근탐사 검사장비의 정확도 평가)

  • Park Sung-Mo;Rhim Hong-Chul;Rhim Byung-Ho
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2006.05a
    • /
    • pp.163-166
    • /
    • 2006
  • The purpose of the research is to assess the accuracy of steel bar detector among other nondestructive testing equipment. The result of previous research shows that the average errors of rebar detector are 14.7% for the cover depth, 2.3% for the rebar spacing, and 11% for the rebar diameter. But this experiment was performed at the laboratory and the mortar was used for covering the steel bars instead of concrete. In situ condition can be different from the laboratory's so the outcomes do not correspond with those of laboratory. This research was performed at the buildings to be reconstructed. Nondestructive and destructive testing can be performed side by side since the building if to be destroyed. Steel bar detector was operated on the beam and the column and concrete cover of those members was removed for the actual measurement of rebar depth, spacing, and diameter finally, presumed value can be directly compared with actual data.

  • PDF

Imaging of Ground Penetrating Radar Data Using 3-D Kirchhoff Migration (3차원 Kirchhoff 구조보정을 이용한 지표레이다자료의 영상화)

  • Cho, Dong-Ki;Suh, Jung-Hee;Choi, Yoon-Kyoung
    • Geophysics and Geophysical Exploration
    • /
    • v.5 no.3
    • /
    • pp.185-192
    • /
    • 2002
  • We made a study of 3-D migration which could precisely image data of GPR (Ground Penetrating Radar) applied to NDT (Non-Destructive Test) field for the inspection of structural safety. In this study, we obtained 3-D migrated images of important targets in structuresurvey (e.g. steel pipes, cracks) by using 3-D Kirchhoff prestack depth migration scheme developed for seismic data processing. For a concrete model consisting of steel pipe and void, the targets have been well defined with opposite amplitude according to the parameters of the targets. And migrated images using Parallel-Broadside array (XX configuration) have shown higher resolution than those using Perpendicular-Broadside array (YY configuration) when steel pipes had different sizes. Therefore, it is required to analyze the migrated image of XX configuration as well as that of general YY configuration in order to get more accurate information. As the last stage, we chose a model including two steel pipes which cross each other. The upper pipe has been resolved clearly but the lower has been imaged bigger than the model size due to the high conductivity of the upper steel.