• Title/Summary/Keyword: 철근콘크리트 슬래브

Search Result 296, Processing Time 0.024 seconds

Influence of Loading Sizes on Natural Frequency of Composite Laminates (복합적층판의 고유진동수에 대한 하중 크기의 영향)

  • Han, Bong-Koo;Suck, Ju-Won
    • Journal of the Korean Society for Advanced Composite Structures
    • /
    • v.2 no.3
    • /
    • pp.42-47
    • /
    • 2011
  • A method of calculating natural frequencies corresponding to the modes of vibration of beams and tower structures with irregular cross sections and arbitrary boundary conditions was developed. The result is compared with that of the beam theory. Finite difference method is used for this purpose. The influence of the $D_{22}$ stiffness on the natural frequency is rigorously investigated. In this paper, the relation between the applied loading sizes and the natural frequency of vibration of some structural elements is presented. The results of application of this method to steel bridge and reinforced concrete slab bridge by using specially orthotropic plate theory is presented.

An Assessment for Anti-piercing Designs of RC Slabs against Small Caliber Bullets (소구경 탄자에 대한 철근콘크리트 슬래브의 관입저항력 평가)

  • Kim, Suk-Bong;Kang, Young-Chul;Lee, Jong-Chan;Baek, Sang-Ho;Park, Young-Jun
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.10 no.2
    • /
    • pp.69-75
    • /
    • 2007
  • So far, anti-piercing depths for concrete slabs have been determined using Conventional Weapon's Effects Program(CONWEP) that was developed by the U. S. Army's Corps of Engineering. However, it has been suggested by a number of field officers that the values computed by CONWEP tend to be too high for protective facilities used in small military units and that indiscriminate application of these values to such facilities would lead to uneconomical penetration-proof designs. In this study, gunshots onto RC slabs were carried out using KM80 bullets in order to measure the piercing depths. The observed depths and the depths offered by the CONWEP system differed greatly from each other by up to 119 centimeters. Based on the depth values obtained through this experiment, we have proposed a new equation to calculate effective anti-piercing depths for RC slabs against small caliber bullets.

An Evaluation on the Shear Strength for Different Forms of Shear Connector in T-type Composite Beam (T형 합성보의 시어 커넥터 형상에 따른 전단내력 평가에 관한 연구)

  • Kim, Sung Bae;Kim, Sang Seup
    • Journal of Korean Society of Steel Construction
    • /
    • v.18 no.2
    • /
    • pp.279-288
    • /
    • 2006
  • A stud connector was used by the shear connector of a composite beam. The shear connector is an important element in heightening the composition rate of a composite beam .study was based on the experiments conducted on 15 specimens using the push-out test.In this paper, through an experiment, the shear connector of other forms was analyzed instead of the stud connector. It is hoped that this application can be used in composite beams.

Evaluation of Shear Load Carrying Capacity of Lateral Supporting Concrete Block for Sliding Slab Track Considering Construction Joint (타설 경계면을 고려한 슬라이딩 궤도 횡방향 지지 콘크리트 블록의 전단 내하력 평가)

  • Lee, Seong-Cheol;Jang, Seung Yup;Lee, Kyoung-Chan
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.30 no.1
    • /
    • pp.55-61
    • /
    • 2017
  • Recently several researches have been conducted to develop sliding track system in which friction between concrete track and bridge slab has been reduced. This paper investigated shear load carrying capacity of lateral supporting concrete block which should be implemented to resist lateral load due to train in sliding track system. In order to evaluate shear load carrying capacity of lateral supporting concrete block, analytical model has been developed considering concrete friction and rebar dowel action along construction joint. The proposed model predicted test results on the shear load carrying capacity from literature conservatively by 13~23% because effect of aggregate interlock along crack surface was neglected. Since construction joint status is ambiguous on construction site, it can be concluded that the proposed model can be used for reasonable design of lateral supporting concrete block. Based on the proposed model, design proposal for lateral supporting concrete block has been established.

Experimental Study for Proposal of Concrete Removal Standard using Hydrodemolition Method (Hydrodemolition에 의한 콘크리트 파쇄기준 제안을 위한 실험적 연구)

  • Jeong, Won-Kyong;Kim, Ki-Heun;Yun, Kyong-ku;Kim, Yong-Gon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.1D
    • /
    • pp.73-80
    • /
    • 2009
  • To repair the deteriorated concrete structures, the deteriorated parts should be removed by using surface treatment methods and replaced by new construction materials. Hydrodemolition is one of the most effective methods for chipping off the deteriorated concrete and treating the remaining concrete. The water jet can remove the deteriorated concrete without damaging the reinforcement steel and surrounding aggregates. Using the water jet system improves surface texture, which ensures to improve adhesive strength between new and old concretes. In this study, three different concrete slab strengths and two water jet machine sets were investigated. Experimental results showed the relationship between concrete strength and water jet condition and this would enable to provide the information of the domestic water jet system and specification, which would contribute to automatization and efficiency of concrete repairing and rehabilitation works.

Influence of Bubble Sheet Applying Methods on Temperature of Exposed Joint Rebar at Wall Surface of Load-Bearing Wall Structure Building During Winter (동절기 벽식구조 건축물 벽부분의 버블시트 포설방법 변화가 이음부 노출철근의 온도에 미치는 영향)

  • Han, Cheon-Goo;Lee, Jea-Hyeon;Kim, Min-Sang
    • Journal of the Korea Institute of Building Construction
    • /
    • v.17 no.2
    • /
    • pp.149-155
    • /
    • 2017
  • In this research, the surface covered curing method using the double-layered bubble sheet was evaluated. This double-layered bubble sheet has outstanding insulating performance with its low heat conductivity and high economic feasibility with its high durability. However, in the case of wall-typed building construction, the area of exposed rebar is curious on curing performance with the double-layered bubble sheet in spite of the double-layered bubble sheet showed favorable performance for slab. Therefore, in this research, regarding the actually constructed wall-typed apartment building, the most efficient curing method was suggested based on the evaluation of curing performance depending on temperature distribution depending on various location of covered or exposed rebar. As a result, the D method was determined as the most efficient curing method without any concern of early-age frost damage. However, by considering easiness of construction, the B method of covering the pieced double-layered bubble sheet on gap between rebars can be another option of desired result.

A Study on Coupling Coefficient Between Rail and Reinforcing Bars in Concrete Slab Track (콘크리트 슬래브궤도에서 레일과 철근 사이의 결합계수에 대한 연구)

  • Kim, Min-Seok;Lee, Sang-Hyeok;Kwon, Jae-Wook;Lee, Jong-Woo
    • Proceedings of the KSR Conference
    • /
    • 2008.11b
    • /
    • pp.1169-1177
    • /
    • 2008
  • The system of the railway signaling using the track transmits the approved speed to the location of a train and it. Referring to the way of transmitting train control information, there are the one transmitting it to the on-board system of a train using the direct track, the another transmitting it establishing an instrument, and the other transmitting an instrument by a railway track. The one is the method using the direct track as a conductor for composing the part of the track and attaining the information controlling a train by transmitting a signal to the track. It is used for the high-speed railway and the subway. The method using the track attains information by transmitting it to returned information, and the on-board system of a train attains it by magnetic coupling. Because many reinforcing bars on the concrete slab track are used, interaction between a rail and a reinforcing bar that is not produced on ballast track is made. Due to the interaction, the electric characteristic of rail is changed. In the current paper, we numerically computed the coupling coefficient between the rail and the reinforcing bar based on the concrete slab track throughout the model related to the rail and the reinforcing bar using the concrete slab track that is used in the second interval of the Gyeongbu high-speed railway, and we defined the coupling coefficient not changed in the electric characteristic of rail in the condition that there is no interaction between the rail and the reinforcing bar.

  • PDF

FBG Optical Fiber Sensors Embedded in Fiber Reinforced Polymer Composite Reinforcing Bars (철근대용 FRP 복합재에 삽입된 FBG 센서의 변형률에 관한 연구)

  • Kim, Myong-Se;Cho, Hyung-Sik;Cho, Sung-Kyu;Yoon, Jae-Jun;Baek, Hyun-Deok;Kim, Ki-Soo
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.27 no.2
    • /
    • pp.124-133
    • /
    • 2007
  • In our research, we focused on the FBG sensor system which is one of the fiber optic sensor system. The FBG sensor system is used for structural measurements. The problem of FBG sensor is very thin and weak. The methods that can protect FBG optical fiber sensor front outside forces such as the impacts are investigated. The FBG sensor embedded in the fiber reinforced composites which can replace the reinforcing steel bars in concretes can be applied to the concrete structures by embedding to the composite materials. The progresses in tensile strength of FBG sensor embedded in the reinforcing FRP bars in the concrete structures compare to plain FBGs were observed and the good long term durability is expected.

Analysis of Post-tensioned Bridge by Specially Orthotropic Laminate Theory (I) - Reinforced Concrete Slab Bridge (특별직교이방성 이론에 의한 포스트 텐션된 교량의 해석(I) - 철근 콘크리트 슬래브교 -)

  • 김덕현;원치문;이정호
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2001.05a
    • /
    • pp.135-140
    • /
    • 2001
  • A post-tensioned reinforced concrete slab bridge is analyzed by specially orthotropic laminate theory. Symmetrically reinforced slab with tension and compression steel is considered for convenience of analysis. Each longitudinal and transverse steel layer is regarded as a lamina, and material constants of each lamina is calculated by the use of the rule of mixture. This bridge is under uniformly distributed vertical loads, and axial loads and end moments due to post-tensioning. In this paper, finite difference method is used for numerical analysis of this bridge. Theory and analysis method of specially orthotropic laminate plates used in this paper can be used for design of new bridges, and maintenance and repair of old bridges.

  • PDF

Structural Behavior Analysis of Skew RC Slabs by p-Version Nonlinear Finite Element Model (p-Version 비선형 유한요소 모델에 의한 철근 콘크리트 경사 슬래브의 역학적 거동 해석)

  • Cho, Jin-Goo;Park, Jin-Hwan
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.47 no.5
    • /
    • pp.17-26
    • /
    • 2005
  • The objectives of this study are to determine the behavior of simply supported skew RC slabs subjected to a point load. The p-version nonlinear skew RC FE model has been used. Integrals of Legendre polynomials are used for shape functions with p-level varying from 1 to 10. In the nonlinear formulation of this model, the material model is based on the Kupfer's yield criterion, hardening rule, and crushing condition and layered model is used through the thickness. The cracking behavior is modeled by a smeared crack model and the fixed crack approach is adopted as the crack model. It is shown that the proposed model is able to adequately predict the deflection and ultimate load of nonlinear skew RC slabs with respect to steel arrangements and steel ratios.