• Title/Summary/Keyword: 철근콘크리트 슬래브

Search Result 296, Processing Time 0.027 seconds

Wheel Load Distribution of Simply Supported Reinforced Concrete Slab Bridge (철근콘크리트 단순 슬래브 교량의 윤하중분포폭에 관한 연구)

  • 오병환;신호상;한승환
    • Magazine of the Korea Concrete Institute
    • /
    • v.10 no.3
    • /
    • pp.125-134
    • /
    • 1998
  • 최근에 수행된 일련의 철근콘크리트 슬래브 교량의 파괴시험의 결과 비록 교량의 노후화되었다 하더라도 내하력은 설계하중보다 더 크게 나타나고 있다. 본 연구에서는 철근콘크리트 슬래브 교량의 이런 높은 내하능력을 보이는 여러 가지 원인들 가운데 가장 큰 영향을 줄 것으로 예상되는 슬래브 교량의 하중분배거동에 대한 연구를 수행하였다. 철근콘크리트 슬래브 교량의 윤하중분포폭에 영향을 미치는 주요 변수들에는 지간길이, 교량폭, 단부보, 하중형태 및 지점조건이 있다. 본 연구결과에 의하면 지간길이와 교폭에 따라 현행의 윤하중분포폭은 과소 혹은 과대 평가되고 있다. 이들 각 변수들에 대한 포괄적인 유한요소 해석과 분석을 통하여 철근콘크리트 슬래브 교량의 윤하중분포폭을 도출하였고 이들 결과들을 비선형 회귀분석을 통하여 슬래브 교량의 윤하중분포폭의 예측 및 설계식을 제안하였다. 본 연구에서 제안된 윤하중분포폭의 식은 철근콘크리트 슬래브 교량의 보다 정확한 설계 및 합리적인 내하력 산정시 매우 효율적으로 사용될 것으로 사료된다.

An Experimental Study on the Structural Bechavior of Two-layered Reinforced Concrete Slabs in Bridges (교량에서 2층 분리타설한 철근콘크리트 슬래브의 구조거동에 관한 실험연구)

  • 오병환;이형준;이명규;한승환
    • Magazine of the Korea Concrete Institute
    • /
    • v.6 no.3
    • /
    • pp.162-172
    • /
    • 1994
  • The flexural and horizontal shear behavior of overlaid concrete slabs with polymer interface is investigated in the present study. An experimental program was set up and several series of overlaid concrete slabs have been tested to study the effect of different surface preparations and dowel bars between old slab and overlay under service and ultimate loads. 'The cracking and ulti mate load behavior for various cases including acryl emulsion treatment and doweled joints has been studied. The present study indica.tes that the overlaid concrete slabs behave integrally with existing bottom slabs up to ultimate range for rough and doweled joints with polymer interface. The pres ent study provides a firm base for the realistic design of two-layered RC slabs in bridges.

Analysis Model of Extruded ECC Panel RC Composite Slabs (압출성형 ECC 패널 RC 복합 슬래브의 해석모델)

  • Cho, Chang-Geun;Kim, Yun-Yong;Seo, Jeong-Hwan;Lee, Seung-Jung
    • Journal of Korean Association for Spatial Structures
    • /
    • v.12 no.1
    • /
    • pp.51-58
    • /
    • 2012
  • A model for the nonlinear flexural analysis of extruded Engineered Cementitious Composite (ECC) panel reinforced concrete (RC) composite slab has been newly presented. From direct tensile test, ECC panel has been modeled to have the high-ductile tensile behavior after cracking. The developed model was compared with bending test results of two specimens, a conventional RC slab and a ECC panel RC composite slab. The predicted results were well patched with the experimental results, and the ECC panel RC composite slab system had advantages in crack control and improving flexural load-carrying capacity and deformation-capacity.

A Study on Crack Control of Early-aged Reinforced Concrete Rahmen Bridge (초기재령 철근큰크리트 라멘교의 균열제어에 관한 연구)

  • Jung Hee-Hyo;Lee Sung-Yeol;Kim Woo-Jung
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.19 no.1 s.71
    • /
    • pp.15-25
    • /
    • 2006
  • The researches on the early-aged concrete hydration process and the techniques for the early-aged concrete crack control mainly have been focused and developed on the massive concretes in both experimental and numerical studies. However, those researches for relatively thin members such as the upper slab of the reinforced concrete rahmen bridge have nearly been attempted. In this study, a designing technique for crack controlling in the thin members of the early-aged reinforced concrete rahmen bridges based on measured temperature history, strength revelation model and sinkage model is proposed. A method of calculating the reinforcing bar area for crack controlling is also proposed and it is found that the distributing bars under the design loads become the main reinforcing bars in the temperature stress analysis of the early-aged reinforced concrete rahmen bridges. It is shown that the proposed analysis technique is able to use the design of crack control for the early-aged reinforced concrete rahmen bridge.

An Experimental Study on Flexural Behavior of One-Way Concrete Slabs Using Structural Welded Wire-Fabric (구조화 용접철강을 사용한 일방향 슬래브의 휨 거동에 관한 실험적 연구)

  • 허갑수;윤영호;양지수;김석중;정헌수
    • Magazine of the Korea Concrete Institute
    • /
    • v.6 no.2
    • /
    • pp.169-179
    • /
    • 1994
  • Recently the construction of residential buildings faces many difficulties due to the shortage of building materials and works. Simplifying the stage of processing and assembling reinforcing rods and increasing the efficiency of them in reinforced concrete construction can be used to settle the difficulties. In the respect, structural wire-fabric and loop wire-fabric is utilized. The purpose of this study, on condition of being $210kg/cm^2$ concrete strength, is to analyze the structural and flexural properties of one-way concrete slabs by testing with different reinforcing type, tensile steel ratio based with minimum steel ratio, boundary condition and splice length which affect the maximum width of crack and ductility factor. From the test results, the ductility factor is approved that the slabs using deformed bar were much better than that using wire-fabric, and 30D of splice length was appropriate in the slabs as splice length. In the control of the maximum crack width the slabs using wire-fabric and loop wire-fabric were much better than that using deformed bar.

Study on the Reinforced Concrete Slab Bridges of North Korea (북한의 철근콘크리트 슬래브교에 관한 연구)

  • Han, Eui Seok;Lee, In Keun;Park, Sun Kyu
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.33 no.2
    • /
    • pp.455-464
    • /
    • 2013
  • If North Korea continuously remains an isolated nation without social interaction with South Korea, the gaps in the theoretical and technological status in construction technology become greater between North and South Korea. Therefore if interactions between North and South Korea can be made, there will be significant improvement in infrastructure technological performance can be made(i.e., Reinforced Concrete bridges). This study was performed to compare and analyze data related to the design standards of North Korean RC bridges and to execute a structural analysis based on standard design specifications of RC slab bridges. Especially, basic study of analyzing the influences on design truck loads of North and South Korea was conducted for the purpose of predicting the performance of North Korean RC slab bridges and the safety levels of traveling vehicles in advance. It is expected that the results of this study can be used as fundamental data for the set-up of South-North RC bridge specification when South and North Korea enter a stage of cooperation and interaction between South and North Korea are actively pursued to prepare for reunification.

Structural Performance Evaluation of Hollow Reinforced Concrete Half Slabs (철근콘크리트 중공 하프슬래브의 구조성능평가)

  • Hwang, Hyun-Bok;Kim, Sang-Woo;Hwang, Hyun-Sik;Lee, Ki-Jang;Lee, Jung-Yoon
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.45-48
    • /
    • 2008
  • This study is for proposing the shape of hollow and evaluating the structural performance of hollow reinforced concrete (RC) half slabs. The two-phase experimental works were carried out, and styrofoam was used for reduction of dead load and vibration. From the Phase I test result, the shape and spacing of the hollow were determined to obtain the high deduction ratio of the concrete and the desirable failure mode of the hollow RC half slabs. In the Phase II test, two slab specimens were tested in flexure to evaluate the flexural capacity of the hollow RC half slabs with the proposed hollow shape. In the result of the test, all the specimens having the proposed hollow shape showed sufficient flexural capacity.

  • PDF

A Fundamental Study for the Behavior of Lightweight Aggregate Concrete Slab Reinforced with GFRP Bar (GFRP bar를 휨보강근으로 사용한 경량골재콘크리트 슬래브의 거동에 관한 기초적 연구)

  • Jeon, Sang Hun;Shon, Byung Lak;Kim, Chung Ho;Jang, Heui Suk
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.16 no.3
    • /
    • pp.99-108
    • /
    • 2012
  • In this paper, to intend anticorrosive effect and weight reduction of conventional reinforced concrete slab, lightweight concrete slab reinforced with glass fiber reinforced polymer(GFRP) bar was considered and some basic behaviour of the slab were investigated. Measurement of splitting tensile strength and fracture energy of the concrete, a number of flexural experiment of the slab, numerical analysis using nonlinear finite element analysis, and comparison of the experimental results to the numerical analysis, were conducted. As a result, even the weight of the lightweight concrete slab could be reduced by about 28% than the normal concrete slab, failure load of the lightweight concrete slab was 36% smaller than the normal concrete slab. Such a thing can be attributed to the lower axial stiffness and lower bond strength of GFRP bar. In the numerical analysis, to consider decreasing property of bond strength of the lightweight concrete, interface element was used between the concrete and the GFRP bar elements and this method was shown to be a better way for the numerical analysis to approach the experimental results.

Study on Stress Variation in Slab and Support of Shearwall-Type RC Apartment during Construction (전단벽식 아파트에서 시공중 슬래브 및 동바리의 응력변화에 대한 연구)

  • Kim Young-Chan
    • Journal of the Korean Society of Safety
    • /
    • v.19 no.4 s.68
    • /
    • pp.161-165
    • /
    • 2004
  • Safety and efficiency in the construction of RC structures mainly depends on optimal operation of shore-slat systems. The disasters in RC construction are mainly due to excessive load applied to falsework and premature removal of supports. Development of sufficient compressive strength of early-age connote is essential for the safety of structures during construction. Most of studies on shore-slab interaction have focused on flat slab structures. In this study, load distributions in floor slabs and supports during the construction of shear wall-type RC apartment building structures is investigated using finite element analysis.

Punching Shear Strength of Reinforced Concrete Slabs Subjected to Biaxial In-plane Tension (면내2축인장력을 받는 철근콘크리트슬래브의 펀칭전단강도)

  • Mo, Gui-Seok;Kim, Dae-Jung;Kim Woo
    • Magazine of the Korea Concrete Institute
    • /
    • v.2 no.3
    • /
    • pp.73-80
    • /
    • 1990
  • This research program is directed at studying the behavior and the strength of reinforced concrete slabs sub¬jected to certain combination of punching shear and in-plane tension. Major variables to be investigated are the shear span to depth ratio of reinforced concrete slabs and the degree of the in-plane tensile force which is act¬ing tangent to the slabs. The experimental results are used for understanding of the degree of tbe interaction between the two loadings, and for developing a new practical design equation.