• Title/Summary/Keyword: 철근콘크리트건물

Search Result 257, Processing Time 0.027 seconds

철근 콘크리트건물의 접지 및 피뢰설비 시스템 검토

  • 이광광
    • Electric Engineers Magazine
    • /
    • v.254 no.10
    • /
    • pp.34-40
    • /
    • 2003
  • the# star city 신축공사는 철골(판매시설), 철근콘크리트(주거시설)가 병행, 시공되고 대지와의 접촉면이 큰 고층 건축물로 각종의 다양한 전기, 전자, 통신설비 기기가 도입되고 있어 문제가 되는 것이 접지의 시공법이다. 건축물에 있어서 뇌보호란 크게 외부 뇌보호와 내부 뇌보호로 나눌 수 있으며 외부 뇌보호는 직격뢰로 부터 건물등을 보호하는 것이고 내부 뇌보호는 낙뢰시 전위상승으로 인한 영향 및 뇌전류의 전자효과를 저감하는 것으로 특히 과전압 내성이 작은 전자기기 등을 대상으로 하는 보호이다.

  • PDF

Evaluation of Concrete Structures Considering Reinforcing Bars in Columns (기둥의 보강철근을 고려한 콘크리트 구조물의 거동 평가)

  • Song, Hyung-Soo;Gwon, Ji-Youn;Cha, Hee-Youn;Min, Chang-Shik
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.289-292
    • /
    • 2008
  • In this study, we interpreted 20 story building by applying the modified modulus of elasticity considering the reinforcing steel proposed in previous literature, and analyzed the movement of the structure according to axial reinforcing steel ratio and lateral reinforcing steel volume ratio. Additionally, we tried to get the result similar to the actual movement considering the order of the construction by performing the analysis by construction stage. Finally, we tried to reduce the section of the column through the analysis considering the reinforcing steel of the column. When interpreting the 20 story building considering the reinforcing steel in the columns, we can reduce the column members up to 4.94% comparing to the general analysis. If we do the same for each construction stage, it is analyzed that we can reduce up to 19%.

  • PDF

Model Updating of a RC Frame Building using Response Surface Method and Multiobjective Optimization (반응표면법 및 다목적 최적화를 이용한 철근콘크리트 건물모델의 모델 개선)

  • Lee, Sang-Hyun;Yu, Eunjong
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.30 no.1
    • /
    • pp.39-46
    • /
    • 2017
  • In this paper, a model updating procedure based on the response surface method combined with the multi-objective optimization was proposed and applied for updating of the FE models representing a low-rise reinforced concrete building before and after the seismic retrofit. The dynamic properties to be matched were obtained from vibration tests using a small shaker system. By varying the structural parameters according to the central composite design, analysis results from the initial FE model using a commercial software were collected and used to produce two regression functions each of which representing the errors in the natural frequencies and mode shapes. The two functions were used as the objective functions for multi-objective optimization. Final solution was determined by examining the Pareto solutions with one iteration. The parameters representing the stiffnesses of existing concrete, masonry, connection stiffness in expansion joint, new concrete, retrofitted members with steel section jacketing were selected and identified.

Behaviour of the Reinforced Concrete Columns with Shear Reinforcement (전단보강량에 따른 철근콘크리트 기둥의 거동)

  • Nam, Sang-Uk;Song, Han-Beom;Tae, Kyung-Hoon;Yi, Waon-Ho;Oh, Sang-Hoon;Yang, Won-Jik
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.45-48
    • /
    • 2008
  • Under earthquake loads, the columns on the lower stories carry large axial forces and horizontal forces as the earthquake loads are acting horizontally and vertically on the building. To distribute the energy entered into the building under earthquakes according to the plastic deformation of the members, it is safer and more economic to persuade plastic hinge to occur in the beams rather than on the columns. However, it is unavoidable to have plastic hinge occurring on the columns when it is applied on both of the main axes of the building, which results in high shear force on the column end, and reinforced concrete column may result in sudden brittle failure due to bending moment and shear force. To increase restriction of the reinforced concrete column on the horizontal forces, this study uses repetitive loading experiments with different amount of shear reinforcement, and analyzes and compares the structural safety and behaviour of the reinforced test materials.

  • PDF

Seismic Performance Evaluation of Seismic Strengthening Method using SRCF External Connection of Medium and Low-rise R/C Buildings (중·저층 철근콘크리트 건물의 SRCF 외부접합 내진보강공법의 내진성능 평가)

  • Lee, Kang-Seok;Jung, Jue-Seong;Lee, Jong-Kweon
    • Journal of the Korea Concrete Institute
    • /
    • v.27 no.2
    • /
    • pp.147-155
    • /
    • 2015
  • A new SRCF (Steel Reinforced Concrete Frame) external connection method for seismic strengthening of medium-and low-rise reinforced concrete buildings is reported in this paper. The SRCF method, proposed in this study, is capable of carrying out the seismic retrofitting construction while residents can live inside building. The method is one of the strength design approach by retrofit which can easily increase the ultimate lateral load capacity of concrete buildings controlled by shear. The pseudo-dynamic test, designed using a existing school building in Korea, was carried out in order to verify the seismic strengthening effects of the proposed method in terms of the maximum load carrying capacity and deformation. Test results revealed that the proposed SRCF strengthening method installed in RC frame enhanced conspicuously the strength and deformation capacities, and the method can resist markedly under the large scaled earthquake intensity level.

Prediction of Deformation of Shear Reinforcement and Shear Crack Width of Reinforced Concrete Members using Truss Models (트러스 모델을 이용한 철근콘크리트 부재의 전단철근 및 전단균열폭의 변형 예측)

  • Kim, Sang-Woo;Lee, Jung-Yoon
    • Journal of Korean Association for Spatial Structures
    • /
    • v.4 no.3 s.13
    • /
    • pp.49-56
    • /
    • 2004
  • This paper predicted the shear deformation, such as strain of shear reinforcement and shear track width, of reinforced concrete (RC) members using Transformation Angle Truss Model (TATM) in order to apply to the shea, analysis of RC buildings. To check the validity of TATM for the shear deformation of RC beams, four RC beams with different shear span-to-depth ratios were cast, instrumented and tested. Observed results were compared with theoretical results by MCFT(Response-2000), RA-STM, FA-STM, and TATM. The proposed model, TATM, better predicted the relationships of the shear stress-strain of shear reinforcement and the shear stress-shear track width than other truss models.

  • PDF

Prediction of Differential Column Shortening for Reinforced Concrete Tall Buildings (시공단계를 고려한 철근콘크리트 고층건물 기둥의 부등축소량 해석)

  • Lee, Tae-Gyu;Kim, Jin-Keun;Song, Jin-Gyu
    • Magazine of the Korea Concrete Institute
    • /
    • v.11 no.1
    • /
    • pp.99-107
    • /
    • 1999
  • In this paper, the prediction method of the differential column shortening for cracked reinforced concrete tall buildings due to the construction sequence is presented. The cracked sectional properties from the strain and curvature of the sectional centroid is directly used. And the stiffness matrix of concrete elements considering the axial strain-curvature interaction effect is adopted. The creep and shrinkage properties used in the predictions were calculated in accordance with ACI 209, CEB-FIP 1990, and B3 model code. In order to demonstrate the validity of this algorithm, the prediction by the proposed method are compared with both the results of the in-situ test and the results by other simplified method. The proposed method is in good agreement with experimental results, and better than the simplified method.

Nonlinear Seismic Analysis of a Three-dimensional Unsymmetrical Reinforced Concrete Structure (3차원 비대칭 철근콘크리트 구조물의 비선형 지진응답해석)

  • Lim, Hyun-Kyu;Lee, Young-Geun;Kang, Jun Won;Chi, Ho-Seok;Cho, Ho-Hyun;Kim, Moon-Soo
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.27 no.5
    • /
    • pp.429-436
    • /
    • 2014
  • This paper presents the seismic performance of a geometrically unsymmetrical reinforced concrete building considering torsional effect and material nonlinearity of concrete and steel. The reinforced concrete building is a structure for seismic performance evaluation in the SMART-2013 international benchmark program. Nonlinear constitutive models for concrete and steel were constructed, and their numerical performance was demonstrated by various local tests. Modal analysis showed that the first three natural frequencies and mode shapes were close to the experimental results from the SMART-2013 program. In the time history analysis for low-intensity seismic loadings, displacement and acceleration responses at sampling points were similar to the experimental results. In the end, nonlinear time history analysis was conducted for Northridge earthquake to predict the behavior of the reinforced concrete structure under high-intensity seismic loadings.

A Proposal of Rapid-Screening Method for Seismic Capacity Evaluation of Low-Rise R/C Buildings - Part 1. Concept of Seismic Capacity Evaluation - (저층 철근콘크리트 건물의 간이 내진성능 평가법 제안 - Part 1. 내진성능평가의 개념 -)

  • Lee, Kang-Seok;Kim, Yong-In;Wi, Jeong-Doo;Hwang, Ki-Tae
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2009.05a
    • /
    • pp.463-464
    • /
    • 2009
  • This study proposes a new rapid-screening method for more reasonably evaluation the seismic capacities of low-rise RC buildings controlled by both shear and flexure. At the same time, this develops the equation of damage judgement and seismic capacity evaluation for quantitatively evaluating the seismic capacities. Using this evaluating method, it is impossible to estimate the evaluation score and earthquake-damage degree confronted with this and evaluate for efficiently the seismic capacities

  • PDF