• Title/Summary/Keyword: 철근이음

Search Result 4,724, Processing Time 0.027 seconds

Analysis of Defect Risk by Work Types based on Warranty Liability Period in Apartments (공동주택 하자보수보증기간에 기초한 공종별 하자위험 분석)

  • Kim, Sang-Hyeon;Kim, Jae-Jun
    • Korean Journal of Construction Engineering and Management
    • /
    • v.19 no.4
    • /
    • pp.34-42
    • /
    • 2018
  • Apartment is a typical type of housing preferred by the majority of people. However, and defect disputes occur because various defects such as cracks, subsidence, breakage, water leakage, dew condensation and dropout are confirmed with numerous structures and finishing materials. From this point of view, this paper analyzes defect frequency and costs of each warranty period by work types, and estimates defect risks by using defect dispute cases. It examined about 5,337 defect items for 32 apartment over ten years old. In this paper, there are 10 types of work types and the warranty liability period is divided into 6 categories. Based on these categories, defect frequency and costs are investigated, and finally defect risk of the warranty liability period by work types confirmed. As a result of this analysis, it was found that defect risk in RC and finishing work is very high. Especially the RC work revealed that there is a high risk of trying from the third year onwards and it was found that the defect risk up to the second year is high in the finishing work. Due to aging of RC structure, the defect risk gradually increases, and finishing work initially cause defect disputes because of the housing environment.

A Basic Study for Single Shell Support System of Railway Tunnel (철도 터널의 싱글쉘 지보시스템 적용에 관한 기초 연구)

  • Jung, Daeho;Jeong, Cahnmook
    • Journal of the Korean GEO-environmental Society
    • /
    • v.17 no.1
    • /
    • pp.39-48
    • /
    • 2016
  • In this study, it can be shortened tunnel construction work period by introducing a single-shell tunnel does not placing the secondary concrete lining, a global research trend, reduction of the cost of the lining placement and number of benefits that can ensure the safety of long-term tunnel with a single shell it was to study the tunnel method. First, we analyze the design and construction practices relating to delete lining of the domestic design and construction practices and a comprehensive analysis of the stability study found a rock in good condition interval (1~3 grades), we propose that the lining uninstalled. In the case of domestic changes on the ground floor is very heavy underfoot conditions many so tunneling method by single shell as ground conditions are good and one preferred the water points that apply in less soil, the soil health and poor sections (4~5 grades) reflecting with respect to the concrete lining that is expected reasonable.

Effects of Non-drainage Hydroponic Culture on Growth, Yield, Quality and Root Environments of Muskmelon (Cucumis melo L.) (멜론 수경재배 시 배액제로화가 근권환경 및 수량에 미치는 영향)

  • Chang, Young Ho;Hwang, Yeon Hyeon;An, Chul Geon;Yoon, Hae Suk;An, Jae Uk;Lim, Chae Shin;Shon, Gil Man
    • Journal of Bio-Environment Control
    • /
    • v.21 no.4
    • /
    • pp.348-353
    • /
    • 2012
  • This study was conducted to figure out the possibility of non-drainage in muskmelon (Cucumis melo L.) hydroponics culture. Plants were grown under 3 different levels of drainage, standard (20~40%, SD), minimum (5~10%, MD), and non-drainage (ND). Throughout cultivation periods, constant water content and electrolyte conductivity changes in root zone were observed in SD in the range of 60~70% and $1.5{\sim}2.5dS{\cdot}m^{-1}$, respectively. ND treatment caused the fluctuation in water content and electrolyte conductivity of root zone and its change ranges were 30~50% in water content and $2{\sim}6dS{\cdot}m^{-1}$ in electrolyte conductivity, but ND treatment did not decrease fruit quality. Even if fruit fresh weight was slightly lower in ND with 1,863 g, than in SD with 1,990 g, the fruit weight in ND meets standard market size, 1,800~2,000 g. Higher soluble solids content was observed in fruit in ND than in SD and MD. Total amount of drainage per plant was 27,718, 15,769 and 2,346 mL in SD, MD and ND, respectively. SD showed $83.2m^3$ drainage, 34.5% drainage of irrigation amount whereas required total irrigation amount in ND was very low with $7m^3$.

New Suggestion of Effective Moment of Inertia for Beams Reinforced with the Deformed GFRP Rebar (이형 GFRP Rebar로 보강된 보의 유효단면이차모멘트 산정식 제안)

  • Sim, Jong-Sung;Oh, Hong-Seob;Ju, Min-Kwan;Lim, Jun-Hyun
    • Journal of the Korea Concrete Institute
    • /
    • v.20 no.2
    • /
    • pp.185-191
    • /
    • 2008
  • To fundamentally solve the problem of deterioration of concrete structures, it has been researched that the high durable concrete structure reinforced with the FRP rebar can be one of major solution to the newly-developed concrete structure. FRP rebar has lots of advantages such as non-corrosive, high performance and light weight against the conventional steel rebar. Among these kinds of FRP rebars, GFRP rebar has usually been considered as the best reinforcement because of its economic point of view. Even though the material capacity of the GFRP rebar was already investigated, there are some problems such as low modulus of elastic that will be cause for degrade of the serviceability of flexural concrete member reinforced with the GFRP rebar. Thus, the deflection characteristics of the GFRP rebar reinforced concrete structure should be considered then investigated. In this study, ACI 440 guideline (2003), ISIS Canada Design Manual (2001) and Toutanji et al. (2000) was considered for predicting the moment of inertia of the concrete beam reinforced with the GFRP rebar. And it was also evaluated that load-deflection relationship had a good accordance with the test and analysis result. In the result of this study, it could be estimated that the load-deflection relationship using the suggested equation of moment of inertia in this study indicated better accordance with the test result than that of the others until failure.

2D/3D Visual Optical Inspection System for Quad Chip (Quad Chip 외관 불량 검사를 위한 2D/3D 광학 시스템)

  • Han, Chang Ho;Lee, Sangjoon;Park, Chul-Geon;Lee, Ji Yeon;Ryu, Young-Kee;Ko, Kuk Won
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.1
    • /
    • pp.684-692
    • /
    • 2016
  • In the manufacturing process of the LQFP/TQFP (Low-profile Quad Flat Package/Thin Quad Flat Package), the requirement of a 3 dimensional inspection is increasing rapidly and a 3D inspection of the shape of a chip has become an important report of quality control. This study developed a 3 dimensional measurement system based on PMP (Phase Measuring Profilometry) for an inspection of the LQFP/TQFP chip and image processing algorithms. The defects of the LQFP/TQFP chip were classified according to the dimensions. The 2 dimensional optical system was designed by the dorm illumination to achieve constant light distribution, In the 3 dimensional optical system, PZT was used for moving 90 degree in phase. The problem of 2 ambiguity was solved from the measured moir? pattern using the ambiguity elimination algorithm that finds the point of ambiguity and refines the phase value. The proposed 3D measurement system was evaluated experimentally.

Structural Behavior of Composite Basement Wall According to Shear Span-to-Depth Ratio and FE Analysis Considering the Condition of Contact Surface (전단경간비에 따른 합성지하벽의 거동과 접촉면의 조건을 고려한 유한요소 해석)

  • Seo, Soo Yeon
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.15 no.6
    • /
    • pp.118-126
    • /
    • 2011
  • The objective of this paper is to study the structural behavior of Composite Basement Wall (CBW) according to shear span-to-depth ratio through an experiment and predict the nonlinear behavior of CBW by using ADINA program widely has been being used for FE analysis. Especially, this study focuses on the part of CBW in which the Reinforced Concrete (RC) is under compression stress; At the region of CBW around each floor, RC part stresses by compressive force when lateral press by soil acts on the wall. The contact condition between RC wall and steel (H-Pile) including stud connector is main factor in the analysis since it governs overall structural behavior. In order to understand the structural behavior of CBW whose RC part is under compressive stress, an experimental work and finite element analysis were performed. Main parameter in the test is shear span-to-depth ratio. For simplicity in analysis, reinforcements were not modeled as a seperated element but idealized as smeared to concrete. All elements were modeled to have bi-linear relation of material properties. Three type of contact conditions such as All Generate Option (AGO), Same Element Group Option with Tie(SEGO-T) and Same Element Group Option with Not tie(SEGO-NT) were considered in the analysis. For each analysis, the stress flow and concentration were reviewed and analysis result was compared to test one. From the test result, CBW represented ductile behavior by contribution of steel member even if it had short shear span-to-depth ration which is close to "1". The global composite behavior of CBW whose concrete wall was under compressive stress could be predicted by using contact element in ADINA program. Especially, the modeling by using AGO and SEGO-T showed more close relation on comparing with test result.

Evaluation of Shear Capacity on PC Girder-PC Beam Joint (PC 큰 보-PC 작은 보 접합부의 전단성능 평가)

  • Moon, Jeong Ho;Oh, Young Hun;Lim, Jae Hyung
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.15 no.6
    • /
    • pp.166-174
    • /
    • 2011
  • The object of this study is to evaluate the structural shear capacity of the PC girder-PC beam joint. The dapped end of PC beam and the ledger of PC girder are usually designed to design load. If the end of PC beam can be designed with continuous end, the dapped end of PC beam and the ledger of PC girder do not need to resist to all loads except dead load and construction load. The experimental program was carried out with 7 specimens containing the variable factors as the anchored method of the hanger bar, design load, be or not exist of ledger bars. As a result, the continuity of the dapped end and the ledger were ensured their safety although the design load was only the dead load and the construction load. The shear critical section was expanded toward the effective depth d, the distance from the supported position of the beam. If the ledger is designed according to PCI Design Handbook, the structural system of the ledger is as to the cantilever slab system. But the ledger of this study is as to the 3 side fixed slab system. Therefore the design of the ledger by PCI Design Handbook will lead to highly conservative results.

Physical and Chemical Properties of Chlorine Bypass System-Dust from Cement Manufacturing (시멘트 생산 시 발생하는 Chlorine Bypass System-dust의 물리 및 화학적 특성)

  • Han, Min-Cheol;Lee, Dong-Joo
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.7 no.4
    • /
    • pp.310-315
    • /
    • 2019
  • This study conducted a series of studies to find alternative ways to use Chlorine Bypass System-dust(CBS-dust) in cement production. The results of engineering characteristics of CBS-dust are summarized as follows. First of all, the density of CBS-dust is 2.40, lighter than cement and the pH was 12.50 which was strong alkaline. In terms of particle size, it was 11.70 ㎛ which was finer than cement. With chemical properties, calcium oxide(CaO) was the highest as 35.10%, potassium oxide(K2O) was 32.43%, potassium chloride(KCl) was 19.46%, sulfur oxide(SO3) was 6.81%, and the remaining chemical components are SiO2, Fe2O3, Al2O3, MgO, and the like. Therefore, if CBS-dust is used as early-strength chemical admixtures in the concrete secondary products that use a large amount of mineral admixtures without rebar, it can be an effective method for increasing the strength of concrete as an alkali activator and preventing early-frost damage of Cold Weather Concrete.

Engineering Characteristics of Blast Furnace Slag Cement Mortar Using Chlorine Bypass System-Dust as Alkali Activator (Chlorine Bypass System-Dust를 알칼리 자극제로 사용한 고로슬래그 시멘트 모르타르의 공학적 특성)

  • Han, Min-Cheol;Lee, Dong-Joo
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.8 no.2
    • /
    • pp.235-244
    • /
    • 2020
  • This study conducted a series of studies to offer a novel method of using CBS-dust that produced as by-product in the manufacture of cement. Four different contents of BS and CBS-dust were adopted for test parameters of this study. Mortar with 50% of W/B was fabricated. First, in the case of the fresh mortar, the flow decreased as the CBS-dust replacement rate increased, but the binder composition ratio BS 45% and 65% showed higher fl ow than Pl ain when repl acing CBS-dust 5%. In the case of air content, overall, the tendency was proportional to the CBS-dust replacement rate, and chloride tended to exceed the reference value at all replacement rates except for the CBS-dust 0% replacement. The compressive strength of the hardened mortar shows the resul t that the strength is improved when the CBS-dust is repl aced by 5% to 10%, and the CSH gel and structure formation is confirmed by microstructure analysis through the hydration reaction when the CBS-dust is replaced. Therefore, for a given condition CBS-dust is used as a early-strength admixture in a concrete secondary product that uses a large amount of admixture without reinforcing bars it can be an effective method for enhancing the strength of concrete as an alkali activator.

Pull-out Resistance Characteristics of the Anchor Bar According to the Grouting Material (주입재료에 따른 Anchor Bar의 인발저항 특성)

  • Yea, Geu-Guwen;Song, Young-Suk
    • The Journal of Engineering Geology
    • /
    • v.18 no.2
    • /
    • pp.227-232
    • /
    • 2008
  • In this study, the pull out resistance characteristics of an anchor bar to support a spillway installed in a slope are investigated by field tests. The injection materials were a cement mortar and cement milk. Unconfined compression strengths of those materials under several conditions were measured. As the result of compression test, the unconfined compression strengths of the cement mortar and the cement milk have positive proportional relation-ship with the water-cement ratio. They also have negative proportional relationship with increasing the curing time. In the same condition of water-cement ratio and curing time, the unconfined compression strength of cement milk is larger than that of cement mortar. In order to reduce the eccentricity in anchor bar during pull-out test in the field, the installation apparatus was improved by inserting a nut type of steel fixing coupling into the anchor bar. As the result of the pull-out test, the strength modification of cement milk was increased steeply at the early curing time. However, that of cement mortar was increased gradually with passing the curing time. Therefore, the cement milk has to use as the injection material for a prompt construction of anchor bar because the strength modification of cement milk is occurred at the early curing time.