• Title/Summary/Keyword: 철근의 영향

Search Result 942, Processing Time 0.029 seconds

Non-destructive Inspection of Top-Down Construction Joints of Column in SRC Structure using Ultrasonic Method (초음파법을 이용한 콘크리트 역타시공 이음부 공극의 화상검출특성)

  • Park, Seok-Kyun;Baek, Un-Chan;Lee, Han-Bum;Kim, Myoung-Mo
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.20 no.4
    • /
    • pp.290-295
    • /
    • 2000
  • The joint treatment of concrete is one of the technical problems in top down construction method. Joints created with the top down construction result in serious weakness from the aspects of both structural and water-barrier function. Ultrasonic method was used for the inspection of top down construction joints of a various column in SRC structure in this study. The advantages and limitations of this method for non-destructive inspection in top down construction joints are investigated. As a result, it has been verified that the semi-direct measurement method is more effective than the other methods for detecting the voids of construction joints using ultrasonic method.

  • PDF

Effect of Longitudinal Reinforcement Ratios and Axial Deformation on Frame Analysis in RC Columns (기둥의 철근비와 축변형량이 보 해석에 미치는 영향 연구)

  • 장원석;민창식
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.11a
    • /
    • pp.477-482
    • /
    • 2001
  • This paper is to study the effect of longitudinal reinforcement ratios and axial deformation on the frame analysis in reinforced concrete(RC) columns and to investigate the effect of confined concrete core, the length-width ratio and longitudinal steel ratios on frame analysis in Concrete-Filled steel Tubular(CFT) columns. An equation if derived to evaluate the modulus of elasticity for core concrete. The 34 reference data have been collected for the purpose and are processed by the mean of a multiple regression analysis technique. The equation and longitudinal reinforcement ratios was applied to RC columns for structural analysis. Then, the difference of beam moment was identified. In general, the results of analysis was indicated reasonable differences in beam moment, in case of longitudinal reinforcement ratios applied to RC columns when compared with the plain concrete columns. In CFT columns the equation was also applied in order to the effect of confined concrete core on structural analysis. Beam moment was increased as volumetric ratio of lateral steel was decreased. The effect of longitudinal steel ratios was investigated in CFT columns and was confirmed beam moment variety. The result was appeared reasonable difference in beam moment as longitudinal steel was increased.

  • PDF

Effects of Design on the Dynamic Response of Reinforced Concrete Slabs (철근 콘크리트 슬래브의 디자인이 동적 거동에 미치는 영향)

  • Oh, Kyung-Yoon;Cho, Jin-Goo;Choi, Soo-Myung;Hong, Chong-Hyun
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.49 no.6
    • /
    • pp.47-54
    • /
    • 2007
  • This paper is on the research of the special character of the dynamic response according to a design of the clamped reinforced concrete slab. In this study, the 20-node solid element has been used to analyze the dynamic characteristics of RC slabs with clamped edges. The elasto-visco plastic model for material non-linearity and the smeared crack model have been adopted in the finite element formulation. The design factor, which affect the dynamic response of the reinforced concrete slab, are the steel layer thickness, steel layer depth, steel layout method, steel layout angle and the slab thickness and span ratio. The main purpose of this study was to find out the dynamic response of the reinforced concrete slab according to above variables. The reduction of deflection/thickness ratio appeared less than 2% when the slab thickness between 20 and 21cm. It is desirable that the slab thickness must be above 20-21cm. The reduction ratio of deflection is appeared greatly when the value of the span/thickness ratio is between 25 and 30. In conclusion, the steel layer depth and thickness had a little effect on deflection of the dynamic response, but had no effect on the steel layout angle.

Residual strength of spalled high-performance concrete members subjected to fire (화재시 고강도 콘크리트 부재의 폭렬성상에 따른 잔존강도)

  • Choi, Eun-Gyu;Shin, Yeong-Soo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.941-944
    • /
    • 2008
  • This study is aimed to investigate the residual strength of fire damaged high-performance concrete flexural and compressive members. The compressive strength of specimens is 55MPa and the main parameter for comparison is the exposure time to fire. In case of beams, the cover thickness made the differences in spalled section area, residual strength and serviceability. The exposure time to fire did not affect on the spalled section area in case of compressive members without loading. However, the residual strength and stiffness was reduced by the time exposed to fire. This study can be used to estimate the performance of fire damaged high-strength concrete structural members for reusing and to give the information for repairing and strengthening.

  • PDF

Flexural Behavior of Reinforced Concrete Beams mixed with Hwang-toh (황토가 혼입된 철근 콘크리트 보의 휨 거동)

  • Kim, Sung-Bae;Yi, Na-Hyun;Kim, Hyun-Young;Phan, Duc-Hung;Kim, Jang-Ho
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.281-284
    • /
    • 2008
  • Recently, interest in eco-friendly structure has been increased and many researches about hwang-toh are being actively processed. However, most researches are about material properties of hwang-toh, and researches about structural performance are insufficient. Moreover, the usability of activated hwang-toh is being identified in some ways, but its use rate is low in economic aspect in reality. Non-activated hwang-toh is expected to be advantageous in respect of economy but its material and structural performance have not been identified. Therefore, the effect of activated hwang-toh and non-activated hwang-toh on flexural capacity of hwang-toh concrete beam is analyzed in this research.

  • PDF

An Experimental Study on the Creep and Shrinkage Behavior of High-Strength Concrete Members (고강도 콘크리트 부재의 크리프 및 건조수축 특성에 관한 실험적 연구)

  • Oh, Byung Hwan;Um, Joo Yong;You, Seung Un;Cha, Soo Won;Lim, Dong Hwan
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.13 no.2
    • /
    • pp.31-40
    • /
    • 1993
  • Many reseachers have performed extensive studies on the creep and shrinkage of concrete. Mechanism of creep and shrinkage however is not quite well-known, especially for high strength concrete. Therefore, the purpose of this study is to explore the shrinkage and creep characteristics of high strength concrete. The main variables investigated include condition of drying, reinforcement and duraton of load. The effects of drying and reinforcements are clarified and compared with various exsiting models. The present study provides useful data for the design and analysis of high stength concrete structures.

  • PDF

Time-Dependent Deflections of Prestressed Concrete Bridges Constructed by the Segmental Cantilever Method (캔틸레버 시공법에 의해 가설되는 프리스트레스트 콘크리트 교량의 장기처짐해석)

  • Oh, Byung Hwan;Choi, Kye Shick
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.10 no.2
    • /
    • pp.49-58
    • /
    • 1990
  • A numerical procedure is developed to analyze the time-dependent deflections of prestressed concrete bridges constructed by the segmental cantilever method. The developed computer program accounts for the time-dependent properties of prestressed concrete materials due to the varying modulus of elasticity, creep and shrinkage of concrete and the stress relaxation of prestressing steel. It also accounts for the stiffness increase due to the presence of the steel reinforcements and the effects of the shear deformation of the prestressed concrete bridge girders. The program is applied to a multi-span continuous segmental prestressed concrete bridge to demonstrate its capabilities and to explore the behavior characteristics of the segmental bridges.

  • PDF

Performance Based Seismic Design of Apartment Houses by Applying Seismic Rebar (공동주택의 성능기반설계 시 내진철근의 영향평가)

  • Jo, Min-Joo;Yu, Seong-Yong;Kang, Ji-Yeon;Kim, Hyung-Geun
    • Journal of Korean Association for Spatial Structures
    • /
    • v.17 no.4
    • /
    • pp.115-122
    • /
    • 2017
  • In this study, performance based seismic design was performed on the shear wall structural system and the beam-column system as a variable general rebar and seismic rebar, and comparing the capacity of the two models of each system. From nonlinear analyses, the capacity of the shear wall structural system applying seismic rebar has shown a stable behavior after the maximum strength, but there is little difference. Furthermore, both models showed similar capacity between story drift and story shear force and capacity of members. These results are attributed to the fact that the seismic rebar, which is highly ductile under the seismic load applied to the target structure, does not render sufficient capacity.

Effects of Material Characteristics on the Dynamic Response of the Reinforced Concrete Slabs (재료 특성이 철근 콘크리트 슬래브의 동적 거동에 미치는 영향)

  • Oh, Kyung-Yoon;Cho, Jin-Goo;Hong, Chong-Hyun
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.49 no.4
    • /
    • pp.43-49
    • /
    • 2007
  • The reinforced concrete slab is one of main structure members in the construction industry sector. However, most of researches regarding to RC slabs have been focused on two-dimensional Mindlin-type plate element on the basis of laminated plate theory since three-dimensional solid element has a lot of difficulties in finite element formulation and costs in CPU time. In reality, the RC slabs are subjected to dynamic loads like a heavy traffic vehicle load, and thus should insure the safety from the static load as well as dynamic load. Once we can estimate the dynamic behaviour of RC slabs exactly, it will be very helpful for design of it. In this study, the 20-node solid element has been used to analyze the dynamic characteristics of RC slabs with clamped edges. The elasto-visco plastic model for material non-linearity and the smeared crack model have been adopted in the finite element formulation. The applicability of the proposed finite element has been tested for dynamic behaviour of RC slabs with respect to characteristics of concrete materials in terms of cracking stress, crushing strain, fracture energy and Poisson's ratio. The effect on dynamic behaviour is dependent on not crushing strain but cracking stress, fracture energy and Poisson's ratio. In addition to this, it is shown the damping phenomenon of RC slabs has been identified from the numerical results by using Rayleigh damping.

Column Shortening Prediction of Concrete Filled Tubes using Monte Carlo Method (몬테카를로 기법을 이용한 CFT 기둥축소량의 예측)

  • Jang, Sung-Woo;Song, Hwa-Cheol;Sho, Kwang-Ho
    • Journal of Korean Association for Spatial Structures
    • /
    • v.10 no.1
    • /
    • pp.75-84
    • /
    • 2010
  • According to the available study and experimental data about the long term behavior of CFT(Concrete Filled Tube) columns, the creep and of concrete in CFT columns are smaller than those of RC columns because of the confinement effect of outer steel columns. In this study, the uncertainties associated with assumed values for concrete properties such as strength, creep coefficients, and service load have been considered and analyzed for the prediction of time-dependent column shortening of CFT column. The CFT column shortening analysis using Monte Carlo method is proposed and an of a 37 story tall building with CFT columns is studied for illustration. According to the results obtained by the probability analysis with multi parameters, the effect of variation coefficient for 3 parameters is investigated considering confidence interval.

  • PDF