• Title/Summary/Keyword: 철근겹침이음

Search Result 68, Processing Time 0.017 seconds

The Minimum Lap-spliced Length of the Reinforcement in the Steam Curing UHPC Bridge Deck Slab Joint (UHPC 바닥판 증기양생 현장이음부의 최소철근겹침이음길이)

  • Hwang, Hoon-Hee;Park, Sung-Yong
    • Composites Research
    • /
    • v.26 no.2
    • /
    • pp.135-140
    • /
    • 2013
  • The static test was performed to verify the effect of the joint in the UHPC bridge deck slab and the minimum lap-spliced length was presented. A total of six test members was fabricated to estimate the static behavior of the steam curing UHPC bridge deck slab joint by the four points bending test method. The lap-spliced joint type was expected to be not only simple but also efficient in UHPC structure because of the high bond stress of UHPC. Test results show that the decrease of maximum flexural strength was about 30% and the minimum lap-spliced length which behaved similar to the continued reinforcement in strength and ductility was 150 mm.

Splice Strengths of Noncontact Lap Splices Using Strut-and-Tie Model (스트럿-타이 모델을 이용한 비접촉 겹침 이음의 이음 강도 산정)

  • Hong, Sung-Gul;Chun, Sung-Chul
    • Journal of the Korea Concrete Institute
    • /
    • v.19 no.2
    • /
    • pp.199-207
    • /
    • 2007
  • Strut-and-tie models for noncontact lap splices are presented and parameters affecting the effective lap length $(l_p)$ and the splice strength are discussed in this paper. The effective lap length along which bond stress is developed is shorter than the whole lap length. The effective lap length depends on the transverse reinforcement ratio $({\Phi})$ and the ratio of spacing to lap length $({\alpha})$. As the splice-bar spacing becomes wider, the effective lap length decreases and, therefore, the splice strength decreases. The influence of the ratio ${\alpha}$ on the effective lap length becomes more effective when the transverse reinforcement ratio is low. Because the slope of the strut developed between splice-bars becomes steeper as the ratio ${\Phi}$ becomes lower, the splice-bar spacing significantly affects the effective lap length. The proposed strut-and-tie models for noncontact lap splices are capable of considering material and geometric properties and, hence, providing the optimal design for detailing of reinforcements. The proposed strut-and-tie model can explain the experimental results including cracking patterns and the influence of transverse reinforcements on the splice strength reported in the literature. From the comparison with the test results of 25 specimens, the model can predict the splice strengths with 11.1% of coefficient of variation.

Experimental Study on Lap Splice of Headed Deformed Reinforcing Bars in Tension (인장력을 받는 확대머리 이형철근의 겹침이음에 관한 실험적 연구)

  • Kim, Seung-Hun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.18 no.5
    • /
    • pp.59-67
    • /
    • 2014
  • In tension lap splices of straight deformed bars, KCI Code (KCI2012) and ACI Code (ACI318-11) requires that the lap lengths for class B splice are 1.3 times as development length. KCI2012 contains development length provisions for the use of headed deformed bars in tension and does not allow their tension lap splices. The purpose of this experimental study is to evaluate that KCI2012 equation for the development length, $l_{dt}$, of headed bars can be used to calculate the lap length, $l_s$, of headed deformed bars in grade SD400 and SD500, having specified yield strength of 400 and 500 MPa. Test results showed that specimens with $l_s$ equal to $1.3l_{dt}$ had maximum flexural strengths as 1.16~1.31 times as the nominal flexural strengths, flexural failure mode, and ductility. These observations indicate that $1.3l_{dt}$ is suitable to the tensile lap length of headed deformed bars in grade SD400 and SD500.

Influence of Inadequate Rebar Lap Position on Crack of Underground Box Slab (철근 겹침이음 위치 부적정이 지하박스 슬래브 균열 발생에 미치는 영향)

  • Choi, Jung-Youl;Jang, In-Soo;Chung, Jee-Seung
    • The Journal of the Convergence on Culture Technology
    • /
    • v.6 no.4
    • /
    • pp.685-692
    • /
    • 2020
  • In this study, the experimental and analytical study were performed on the location of longitudinal cracks in the middle of underground box structures. The location where the longitudinal cracking occurred was investigated that the overlapping joint of the rebar and the section of maximum tensile stress generated. Using the finite element analysis, the strength reduction ratio of the rebar was estimated by lack of overlap joint length. As the result of adequacy investigation for the length of the overlap joint presented in the design criteria, it was analytically proved that the lack of the overlap joint length could be cause the decreasing cross-sectional force and concrete cracking. As the result of this study, the adequacy of the overlapping criterion in the current design criteria was confirmed based on the finite element analysis and actual field case. In the case of overlapping joints installed in inappropriate position, it was considered that a long term crack control would be need to ensure the sufficient safety factor for the designed cross-sectional force.

Evaluation of Flexural Strength for UHPC Deck Joints with Lap-Spliced Reinforced Steel Bar (UHPC 바닥판 철근겹침이음 연결부의 휨강도 평가)

  • Hwang, Hoon Hee;Yeo, In Soo;Cho, Keun Hee;Park, Sung Yong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.15 no.6
    • /
    • pp.92-99
    • /
    • 2011
  • Ultra High Performance Concrete(UHPC) is a superior structural material with high strength and durability. Construction of light and slim structures is realized to apply this expectable new materials in practice. This research is a part of the project to develop UHPC precast deck system for hybrid cable stayed bridge. The main object of this study is to investigate behavior of the lap-spliced reinforced connection in UHPC. The major parameter considered in experimental plan was lap-spliced length. The 4-points bending test for 12 specimens were conducted to verify the effect of considered parameters. Test results show that the minimum value of lap spliced length of 300mm which specified in current korea high bridge design code was very conservative for UHPC precast deck system.

Evaluation of the Lap Splice Strengths of High Strength Headed Bars by Flexural Tests of RC Beams (RC 보의 휨실험을 통한 고강도 확대머리철근의 겹침이음 강도 평가)

  • Lee, Ji-Hyeong;Jang, Duck-Young;Kim, Seung-Hun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.26 no.6
    • /
    • pp.247-255
    • /
    • 2022
  • In this paper, a bending test was conducted on beams with two lap splice details when the effective depth of tensile high strength headed bars overlapped is the same and different. Through bending test, the lap splice performance of the high-strength headed bars was evaluated, and the applicability of the KDS-2021 design formula was evaluated. In the LS specimens with lap splice details where the high strength bars had the same effective depth, all specimens with 1.3 times or more of the development length of the KDS-2021 equation and 1 times or more of the ACI318-19 had the flexural failure mode after the ductile behavior to ensure sufficient lap splice performance. For specimens with details of lap joints between headed bars with different effective depth, when lap splice length is calculated by the KDS-2021 formula, the flexural stress may be transmitted so that the flexural strength at the cross section with the large effective depth and the cross section with the small effective depth becomes similar.

An Evaluation of Lap Splice Length of Epoxy Coated Reinforcements Using Beam-End Test (보-단부 시험을 이용한 에폭시 도막 철근의 겹침 이음길이 평가)

  • Kim, Jee-Sang;Kang, Won Hyeak
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.8 no.2
    • /
    • pp.175-182
    • /
    • 2020
  • The application of epoxy coated reinforcements is increased as a means to prevent a corrosion of reinforcements embedded in reinforced concrete structures, However, epoxy coating may reduce the bond capacity between concrete and reinforcement, which results a longer development length and lap splice length. This paper aims to the possibility of modification in lap splice length from reduction of basic development length which was confirmed using a direct pull out test. Total 36 beam specimens were tested to compare the lap splice properties of normal and epoxy coated reinforcements with beam-end test for various lap lengths and diameters of reinforcements. According to the results on failure modes, deformations, and crack widths of this experiments, the modification factor of 1.2 should be used, though the direct bond capacity is assured through direct pull out test.

Applicability of Current Design Code to Class B Splice of SD600 Re-Bars (SD600 철근의 B급 겹침 이음에 대한 현행설계기준의 적용성)

  • Choi, Won-Seok;Chung, Lan;Kim, Jin-Keun;Park, Hong-Gun
    • Journal of the Korea Concrete Institute
    • /
    • v.23 no.4
    • /
    • pp.449-459
    • /
    • 2011
  • An experimental study was performed to evaluate the applicability of current design code to the class B splice of SD600 reinforcing bars. Twelve simply supported beam and slab specimens with re-bar splices were tested under monotonic loading. Parameters for this test were re-bar diameter, concrete cover thickness, concrete strength, and stirrup spacing. Concrete strengths ranged 24.7~55.3 MPa. Most of the specimens were designed to satisfy the class B splice length specified by current design code. Average bar stresses resulting from this test were compared with the predictions by the KCI code provisions. Based on the result, the applicability of the current design code to SD600 re-bars were evaluated. The re-bar splices gave satisfactory performance for all D13 re-bar splices and for D22 and D32 splices with transverse reinforcement. On the basis of the test result, for D22 and the greater diameter bars, the use of either transverse reinforcement of the thicker concrete cover was recommended.

Seismic Performance Evaluation of Reinforced Concrete Bridge Piers with Lap Splices (철근의 겹침이음을 고려한 철근콘크리트 교각의 내진성능평가)

  • 김태훈;박현용;김병석;신현목
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.7 no.3
    • /
    • pp.31-38
    • /
    • 2003
  • Lap splices were located in the plastic hinge region of most bridge piers that were constructed before the adoption of the seismic design provision of Korea Highway Design Specification on 1992. But sudden brittle failure of lap splices may occur under inelastic cyclic loading. The purpose of this study is to analytically predict nonlinear hysteretic behavior and ductility capacity of reinforced concrete bridge piers with lap splices under cyclic loading. For this purpose, a nonlinear analysis program, RCAHEST(Reinforced Concrete Analysis in Higher Evaluation System Technology) is used. Lap spliced bar element is developed to predict behaviors of lap spliced bar. Maximum bar stress and slip of lap spliced bar is also considered, The proposed numerical method for seismic performance evaluation of reinforced concrete bridge piers with lap splices is verified by comparison with reliable experimental results.

Experimental Study on Effect of Confinement Details for Lap Splice of Headed Deformed Reinforcing Bars in Grade SD400 and SD500 (구속상세가 SD400 및 SD500 확대머리 이형철근의 겹침이음에 미치는 영향에 관한 실험적 연구)

  • Kim, Seung-Hun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.19 no.1
    • /
    • pp.62-71
    • /
    • 2015
  • KCI 2012 and ACI318-11 contains development length provisions for the use of headed deformed bars in tension and does not allow their tension lap splices. In ACI318-11, the confinement factor, such as transverse reinforcement factor, is not used to calculate the development length of headed bars. The purpose of this experimental study is to evaluate the effect of confinement details to the lap splice performance of headed deformed reinforcing bars in grade SD400 and SD500. The confinement details are stirrups and tie-down bars in lap zone. Test results showed that specimens with only stirrups had the brittle failure and could not increase lap strengths, and that specimens with composite confinements by stirrups and tie-down bars had the flexural strengths over than nominal flexural strengths. Stirrups with tie-down bars can have an effect on improvement in lap splice of headed bars in grade SD400 and SD500.