• 제목/요약/키워드: 철골접합

검색결과 220건 처리시간 0.025초

WUF-B 접합부 및 합성슬래브로 설계된 철골모멘트골조의 에너지 기반 근사해석을 이용한 연쇄붕괴 저항성능 평가 (Evaluation of Progressive Collapse Resistance of Steel Moment Frame with WUF-B Connection and Composite Slab using Equivalent Energy-based Static Analysis)

  • 노삼영;박기환;홍성철;이상윤
    • 대한건축학회논문집:구조계
    • /
    • 제34권2호
    • /
    • pp.19-28
    • /
    • 2018
  • The progressive collapse resistance performance of a steel structure constructed using the moment frame with the WUF-B connection and the composite slabs was evaluated. GSA 2003 was adapted for the evaluation. Additionally the structural robustness and the sensitivity against the progressive collapse were analyzed. In the numerical analysis, a reduced model comprised of the beam and spring elements for WUF-B connection was adapted. The composite slab was modeled using the composite-shell element. Instead of the time-consuming dynamic analysis for the effect of the sudden column removal, the equivalent energy-based static analysis was effectively applied. The analysis results showed that the structure was the most vulnerable to in the case of the internal column removal, however it satisfied the chord rotation criterion of GSA 2003 due to the contribution of the composite slab which improved the stiffness of structure. In the robustness evaluation, the structural performance showed more than 2.5 times of the requirement according to GSA 2003, and the structural sensitivity analysis indicated the decrease of 33% of the initial structural performance.

RBS 철골모멘트접합부의 내진거동평가를 위한 반복재하 실물대 실험 (Cyclic Seismic Testing of Full-Scale RBS (Reduced Beam Section) Steel Moment Connections)

  • 이철호;전상우;김진호
    • 한국지진공학회:학술대회논문집
    • /
    • 한국지진공학회 2002년도 춘계 학술발표회 논문집
    • /
    • pp.306-316
    • /
    • 2002
  • This paper summarizes the results of full-scale cyclic seismic testing on four RBS (reduced beam section) steel moment connections. Key test variables were web bolting vs. welding and strong vs. medium PZ (panel zone) strength. The specimen with medium PZ strength was specially designed to mobilize energy dissipation from both the PZ and RBS region in a balanced way; the aim was to reduce the requirement of expensive doubler plates. Both strong and medium PZ specimens with web-welding were able to provide sufficient connection rotation capacity required of special moment frames, whereas specimens with web-bolting showed inferior performance due to the premature brittle fracture of the beam flange across the weld access hole. In contrast to the case of web-welded specimens, the web-bolted specimens could not transfer the actual plastic moment of the original (or unreduced) beam section to the column. If a quality welding for the beam-to-column joint is made as in this study, the fracture-prone area tends to move into the beam flange base metal within the weld access hole. Analytical study was also conducted to understand the observed base metal fracture from the engineering mechanics point of view.

  • PDF

더블앵글 접합부를 사용한 철골조의 단순해석 모델 (Simplified Analytical Model for a Steel Frame with Double Angle Connections)

  • 양재근;이길영;박정숙
    • 한국공간구조학회논문집
    • /
    • 제6권1호
    • /
    • pp.45-54
    • /
    • 2006
  • A steel frame is one of the most commonly used structural systems due to its resistance to various types of applied loads. Many studies have been conducted to investigate the effects of connection flexibility, support conditions, and beam-to-column stiffness ratio on the story drift of a frame. Based on the results of these studies, several design guides have been proposed. This research has been conducted to predict the actual behavior of a double angle connection, and to establish its effect on the story drift and the maximum allowable load of a steel frame. For these purposes, several experimental tests were conducted and a simplified analytical model was proposed. This simplified analytical model consists of four spring elements as well as a column member. In addition, a point bracing system was proposed to control the excessive story drift of an unbraced steel frame.

  • PDF

횡하중을 받는 반강접 철골 골조의 유연도에 관한 연구( I ) -접합부 해석모형을 중심으로- (A Study on the Flexibility of Semi-Rigid Steel Frames under Lateral Loadings( I ))

  • 강철규;한영철;이갑조
    • 한국강구조학회 논문집
    • /
    • 제8권3호통권28호
    • /
    • pp.127-137
    • /
    • 1996
  • Connections as basic elements and an integrated part of a steel frame has an effect on the frame's performance. Conventional analysis and design techniques are based on either idealized fixed or pinned conditions. In fact, the use of rigid or pinned connection model in steel frame analysis serves the purpose of simplifying the analysis and design processes, but all connections used in current pratice possess stiffness and transfer moment which fall between the extreme cases of fully rigid and ideally pinned. To predict the behavior of the semi-rigid steel frames, it is necessary to predict the moment-rotation behavior of the beam-to-column connections. In this research, prediction equation for moment-rotation behavior of the beam-to-column connection is suggested and the effect of design parameters has investigated. Prediction model, in a nondimensional form shows the moment-rotation characteristic for connections. It is composed of the curve fitting power function using standardization constant K and 4 parameter $KM_o$, ${\theta}_0$, b, n based on the pretest result about moment-rotation behavior of connection.

  • PDF

철골보와 철근콘크리트기둥으로 구성된 내부 접합부의 극한전단강도 산정에 관한 연구 (A Study on the Ultimate Shear Strength Estimation of the Interior Joints of Steel Beam and Reinforced Concrete Column)

  • 문상훈;안재혁;박천석
    • 한국안전학회지
    • /
    • 제21권2호
    • /
    • pp.57-62
    • /
    • 2006
  • Recent trends in the construction of building frame feature the use of composite steel concrete members. One of such system, RCS(Reinforced Concrete column and Steel beam) system, is known as a type of system to maximize the structural and economic benefits in the most efficient manner. This paper is focusing on an study of ultimate shear strength estimation of the interior beam-column joints of RCS system, with reinforced concrete column and steel beam. Current design methods as well as the majority of the previous researches for ultimate shear strength of the interior beam-column joint of RCS system are not easy to apply actual manner. There is a need to propose the rational macro models based on analytical approach. In this study, design method variables for interior beam-column joints of RCS system is studied assuming shear resistance of steel web panel, diagonal concrete strut mechanism and truss mechanism. Finally, calculated results based on the proposed design model are compared with test data.

철골 커플링 보-벽체 접합부의 변형 특성 (Deformation Characteristics of Steel Coupling Beam-Wall Connection)

  • 박완신;전에스더;한민기;김선우;황선경;윤현도
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2005년도 봄학술 발표회 논문집(I)
    • /
    • pp.435-438
    • /
    • 2005
  • The use of new hybrid systems that combine the advantages of steel and reinforced concrete structures has gained popularity. One of these new mixed systems consists of steel beams and reinforced concrete shear wall, which represents a cost- and time-effective type of construction. A number of previous studies have focused on examining the seismic response of steel coupling beams in a hybrid wall system. However, the shear transfer of steel coupling beam-wall connections with panel shear failure has not been thoroughly investigated. The objective of this research was to investigate the seismic performance of steel coupling beamwall connections governed by panel shear failure. To evaluate the contribution of each mechanism, depending upon connection details, an experimental study was carried out The test variables included the reinforcement details that confer a ductile behaviour on the steel coupling beam-wall connection, i.e., the face bearing plates and the horizontal ties in the panel region of steel coupling beam-wall connections. It investigates the seismic behaviour of the steel coupling beams-wall connections in terms of the deformation characteristics. The results and discussion presented in this paper provide background for a companion paper that includes a design model for calculating panel shear strength of the steel coupling beam-wall connections.

  • PDF

Band Plate로 연결된 RC기둥-철골보 접합부의 이력거동에 관한 실험연구 (Structural Behavior of the RC Column-Steel Beam Joint with Band Plate)

  • 서수연;이원호;이리형;윤승조
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제6권1호
    • /
    • pp.213-221
    • /
    • 2002
  • This paper presents the experimental result of Reinforced Concrete column-steel beam joint connected by Band Plates(BP). Main parameters in the test are the shape of BP and thickness of plate. Ten interior and exterior RC column-steel beam joint specimens are designed. Cyclic loads are applied to the beam end of eight specimens (four interior specimens and four exterior specimens). To evaluate the cyclic effect, monotonic loads are acted for two specimens. All specimen showed similar failure pattern such as the plate of BP get torn after the large deformation. Even though the specimen with double cross type BP has lower strength than the specimen with single cross type BP, the energy dissipation capacity of the specimen turned out high. Thus, provided the strength of joint with double cross type to be designed to have suitable strength by increasing the thickness of plate, the joint system may show higher seismic capacity.

접합부 회전성능에 따른 중간 철골 모멘트 골조의 내진 성능 평가 - II 원인 평가 및 대안 (Seismic Performance Evaluation According to Rotation Capacity of Connections for Intermediate Steel Moment Frames - II. Cause Evaluation and Alternative)

  • 문기훈;한상환;하성진
    • 한국지진공학회논문집
    • /
    • 제18권2호
    • /
    • pp.105-115
    • /
    • 2014
  • This paper is the sequel of a companion paper (I. Performance Evaluation) evaluating the relation between the seismic performance of steel intermediate moment frames (IMFs) and the rotation capacity of connections. The evaluation revealed that the seismic performance of IMFs having the required minimum rotation capacity suggested in the current standards did not meet the seismic performance criteria presented in FEMA 695. Therefore, thepresent study evaluates the causes of the vulnerable seismic performance for steel IMFs and proposes alternatives to satisfy the seismic performance suggested in FEMA 695. To that goal, the results of nonlinear analysis, which are the pushover analysis and the incremental dynamic analysis, are examined and evaluated. As a result, high-rise IMF systems are seen to have the lower collapse margin ratio after connection fracture than row-rise IMF systems and, the actual response isfound to compared tothedesign drift ratio acting on design load design. Finally, the minimum design load values are proposed to meet the seismic performance suggested in FEMA 695 for IMF systems having vulnerable seismic performance.

접합부 회전성능에 따른 중간 철골 모멘트 골조의 내진 성능 평가 - I 성능평가 (Seismic Performance Evaluation According to Rotation Capacity of Connections for Intermediate Steel Moment Frames - I. Performance Evaluation)

  • 문기훈;한상환;하성진
    • 한국지진공학회논문집
    • /
    • 제18권2호
    • /
    • pp.95-103
    • /
    • 2014
  • The current AISC341-10 standard specifiesa value of 0.02 radian for the minimum rotation capacity of connections for the intermediate steel moment frame system. However, despite of the advances realized in the domains of performance evaluation method and analysis method, research onthe minimum rotation capacity of the intermediate steel moment frame systemsatisfying the seismic performance has not been conducted in detail. In this study, the intermediate moment frame systemisdesigned with respect to current standards and the seismic performance in accordance with the rotational capacity of connections is evaluated using the seismic performance evaluation method presented in FEMA-P695. The minimum rotation capacity of intermediate steel moment frames required to satisfy seismic performance as well as the major design values affecting the seismic performance of moment frame areestimated. To that goal, the design parameters are selected and various target frames are designed. The analysis models of the main nonlinear elements are also developed for evaluating seismic performance. The resultsshow that the 20-story structure doesnot meet the seismic performance even if it satisfies the rotation capacity of 0.02 radian.

컬럼-트리 형식 철골모멘트 접합부의 모델링 변수제안 (Modeling Parameters for Column-Tree Type Steel Beam-Column Connections)

  • 안희태;김태완;유은종
    • 한국지진공학회논문집
    • /
    • 제27권1호
    • /
    • pp.59-68
    • /
    • 2023
  • The column-tree type steel beam-column connections are commonly used in East Asian countries, including Korea. The welding detail between the stub beam and column is similar to the WUF-W connection; thus, it can be expected to have sufficient seismic performance. However, previous experimental studies indicate that premature slip occurs at the friction joints between the stub and link beams. In this study, for the accurate seismic performance evaluation of column-tree type moment connections, a moment-slip model was proposed by investigating the previous test results. As a result, it was found that the initial slip occurred at about 25% of the design slip moment strength, and the amount of slip was about 0.15%. Also, by comparing the analysis results from models with and without the slip element, the influence of slip on the performance of overall beam-column connections was examined. As the panel zone became weaker, the contribution of slip on overall deformation became greater, and the shear demand for the panel zone was reduced.