• Title/Summary/Keyword: 철골건축구조물

Search Result 77, Processing Time 0.024 seconds

Shear Strength of Through Beam Type Beam-Column Joint composed of Reinforced Concrete Column and Steel Beam (보 관통형 RCS 접합부의 전단강도 평가)

  • Choi, Keun-Do;You, Young-Chan;Lee, Li-Hyung
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.11 no.4
    • /
    • pp.62-70
    • /
    • 2007
  • This paper reports an evaluation method on the shear strength of interior beam-column joints composed of steel beams and reinforced concrete columns(RCS). The shear strength is generally calculated by the sum of the nominal shear resistance of a steel web panel and concrete elements. In this paper, the shear strength is calculated based on the compression strut theory instead of compression field theory. Design equations presented herein are evaluated through comparison with existing experimental results. The comparisons between experimental and calculated results show an excellent agreement.

Seismic Performance Enhancement of Exposed Column-base Plate Weak-axis Connections for Small-Sized Steel Buildings (소규모 철골조건축물을 위한 약축방향 노출형 주각부의 내진성능 향상)

  • You, Young-Chan
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.23 no.5
    • /
    • pp.1-12
    • /
    • 2019
  • The purpose of this study is to enhance the seismic performance of exposed column-base plate weak-axis connections for small-sized steel buildings. According to the site inspection for the small-sized building construction, the arbitrary connection details in steel buildings have been applied at the job site, which is considered to be insufficient to guarantee structural safety and stability considering the increased seismic risk in Korea. Therefore, a series of test programs had been done to develop enhanced connection details in order to ensue the adequate seismic stability and safety of small-sized steel buildings. From the test results, It was found that the exposed column-base plate weak-axis connections commonly used in Korea shows very poor seismic behavior due to the "Rocking" phenomena caused by the residual plastic deformation of anchor bolts between anchor plate and concrete. A series of hysteretic tests for finding that solution were conducted to reduce the "Rocking" phenomena of the column-base plate connections, and local buckling of webs in H-column. Finally the enhanced stable seismic behavior was obtained by reinforcing at least 8 anchor bolts with good bonding strength and stiffeners to the webs in H-column.

A Study on the Structure Types and Concrete Strength Zoning of Domestic Tall Apartment Buildings (국내 초고층 주상복합 건축물의 구조시스템 유형과 콘크리트 강도 조닝 분석)

  • Kim, Sang-Yeon
    • Land and Housing Review
    • /
    • v.4 no.3
    • /
    • pp.295-301
    • /
    • 2013
  • In this study, cases of domestic tall residential buildings were investigated for the structural types, numbers of stories, total heights, type of lateral load resisting systems, and zoning of concrete strength. Based on these investigation data, the structural planning pattern of tall residential building was analyzed. SRC structure is main structural types of tall residential building at the initial stage of domestic tall residential building, but RC structure is substituted for main structural types since 2005. Retaining wall system is positioned at the core part of structural plan as a lateral load resisting system. Concrete strength zoning of vertical members like columns are divided by vertical heights of lower parts, middle parts, and upper parts. Basic data of structural planning of 40stories and 60 stories residential buildings was proposed based on case investigation.

Seismic Performance Evaluation and Retrofit of a 2-Story Steel Building Using a Fragility Contour Method (취약성 등고선을 이용한 비내진 2층 철골조 건축물에 대한 내진성능 평가와 보강)

  • Shin, Ji-Uk;Lee, Ki-Hak;Jeong, Seong-Hoon
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.16 no.2
    • /
    • pp.47-60
    • /
    • 2012
  • Based on the Korean Building Standard Law, a building less than 3-stories and $1000m^2$ in area is defined as a small-level building and, as a result, this type of building has been excluded from the requirement to comply with seismic design. In order to prevent the loss of life and property under earthquake loadings, the small-scale building should satisfy the seismic performance specified in the current code through a seismic retrofit. In this study, a seismic retrofit scheme of a Buckling-Restrained Knee Brace (BRKB) was developed for non-seismic 2-story steel buildings, including small-scale buildings, using a fragility contour method. In order to develop an effective retrofit scheme of the BRKB for the building, a total of 75 BRKB analytical models were used to achieve the desired performance levels and analyzed using the fragility contour method. The seismic performance of the retrofitted building was evaluated in terms of the weight of the developed BRKB systems. This study shows that the fragility contour method can be used for rapid evaluation and is an effective tool for structural engineers.

A Work Process Model for a Quality Management in Steel Frame Work (철골공사의 품질관리 업무 프로세스 모델 개발)

  • Kim, Jong-Seong;Kim, Hyoung-Joong;Byun, Eun-Jung;Koo, Kyo-Jin;Hyun, Chang-Taek
    • Korean Journal of Construction Engineering and Management
    • /
    • v.8 no.3
    • /
    • pp.150-158
    • /
    • 2007
  • As higher and bigger buildings, steel structure is so for a basic building structure. Quality management of the steel frame work is started from pre plan phase. And classification and relation of works is very important in quality management. The purpose of this study is developing a quality management model for the better quality management in a steel frame work. This model consider a interrelationship of works and $input^{\circ}{\S}utput$ information, and based on the actual condition of current quality management.

Inelastic Time History Analysis of a Five-Story Steel Framed Structure Considering Rigidity of TSD Connection (TSD 접합부의 강성을 고려한 5층 철골골조구조물의 비탄성 시간이력해석)

  • Kang, Suk-Bong;Lee, Jae-Hwan
    • Journal of Korean Society of Steel Construction
    • /
    • v.22 no.3
    • /
    • pp.281-291
    • /
    • 2010
  • In this study, a five-story steel frame was designed in accordance with KBC2005 to evaluate the effects of the beam-column connection on the structural behavior. The connections were designed as fully rigid and semi-rigid. The fiber model was used to describe the moment-curvature relationship of the steel beam and the column, the power model for the moment-rotation angle of the semi-rigid connection and the three-parameter model for the hysteretic behavior of the steel beam, column, and connection. The structure was idealized as separate 2-D frames and as connected 2-D frames. The peak ground accelerations of four earthquake records were modified in a time-history analysis for the levels of the mean return period and for the maximum base-shear force in a pushover analysis. The top story displacement, base-shear force, story drift, demanded ductility ratio for the semi-rigid connection, maximum bending moment of the column, beam, and connection, and distribution of the plastic hinge were examined in the time-history analysis. The frame with the semi-rigid connection yielded a lower base-shear force, less magnitude, and increasing ratio in the bending moment of the column, beam, and connection than the frame with a fully rigid connection. The TSD connection was deemed to have secured the economy and safety of the sample structure that was subjected to seismic excitation for the Korean design level.

A Research for Identification Method of Sprayed Fire-Resistive Material by Thermal Analysis (열분석을 통한 내화 뿜칠재 일치성분석 연구)

  • Cho, Nam-Wook;Rie, Dong-Ho;Shin, Hyun-Jun
    • Fire Science and Engineering
    • /
    • v.25 no.1
    • /
    • pp.7-12
    • /
    • 2011
  • As recent buildings are getting more high-rise and larger, steel structures, not a reinforced concrete structure, for columns and beams among the main structural members in a building are being widely used. Steels used for the main members of a building are constructed with a fire-resistive structure by applying them with fire-resistive coatings. The introduction of a simple test method that can verify the performance of fire-resistive material constructed on a site without conducting a fire-resistant test(real scale fire test) is needed and this study derived a site analysis method possible to make a rapid and scientific analysis through the analysis of components (instrumental analysis) concerning tire-resistive materials. the possibility of application of it in analyzing congruence over site construction materials by recognizing it as a standard material after securing an inherent fingerprint area of tire-resistive materials of which performance was verified in the concrete through thermal analysis was proved through experiments. This research result can be minimize of casualties, who is harmed to building collapse according to structures fire.

Stiffness and Strength of Composite Beams in Steel Building Structures Under Lateral Loading (횡하중을 받는 철골구조물에서 합성보의 강성과 강도)

  • 이승준
    • Computational Structural Engineering
    • /
    • v.2 no.4
    • /
    • pp.79-88
    • /
    • 1989
  • The behavior of composite beams in steel building structures subjected to lateral loading is studied. Mathematical models for the stiffness of composite beams and the strength at the connections, which are dependent on details of the connections are developed based on the previous experimental results and the results from numerical analyses. Analytical models for the skeleton and hysteresis curves of cantilever composite beams are also presented. A single component model for the composite beam, consisting of elastic beam and the end springs at which all the inelstic deformations within a member are lumped, is implemented into the computer program, DRAIN-2D. And a comparison of analytical results is made with the experimental results.

  • PDF

Full-scale Shaking Table Test of Uninterruptible Power Supply Installed in 2-stories Steel Structure (2층 철골 구조물에 설치된 무정전전원장치의 실규모 진동대 실험연구)

  • Lee, Ji-Eon;Park, Won-Il;Choi, Kyoung-Kyu;Oh, Sang-Hoon;Park, Hoon-Yang
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.26 no.3
    • /
    • pp.29-38
    • /
    • 2022
  • In this study, the shaking table tests were carried out on six types of non-structural elements installed on a full-scale two-story steel structure. The shaking table tests were performed for non-structural elements with and without seismic isolators. In this study, the seismic performance of Uninterruptible Power Supply (UPS) specimens was tested and investigated. Non-seismic details were composed of conventional channel section steel beams, and the seismic isolators were composed of high damping rubber bearing (HDRB) and wire isolator. The input acceleration time histories were artificially generated to satisfy the requirements proposed by the ICC-ES AC156 code. Based on the test results, the damage and dynamic characteristics of the UPS with the seismic isolator were investigated in terms of the natural frequency, damping ratio, acceleration time history responses, dynamic amplification factors, and relative displacements. The results from the shaking table showed that the dynamic characteristics of the UPS including the acceleration response were significantly improved when using the seismic isolator.

Fire Fragility Analysis of Steel Moment Frame using Machine Learning Algorithms (머신러닝 기법을 활용한 철골 모멘트 골조의 화재 취약도 분석)

  • Xingyue Piao;Robin Eunju Kim
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.37 no.1
    • /
    • pp.57-65
    • /
    • 2024
  • In a fire-resistant structure, uncertainties arise in factors such as ventilation, material elasticity modulus, yield strength, coefficient of thermal expansion, external forces, and fire location. The ventilation uncertainty affects thefactor contributes to uncertainties in fire temperature, subsequently impacting the structural temperature. These temperatures, combined with material properties, give rise to uncertain structural responses. Given the nonlinear behavior of structures under fire conditions, calculating fire fragility traditionally involves time-consuming Monte Carlo simulations. To address this, recent studies have explored leveraging machine learning algorithms to predict fire fragility, aiming to enhance efficiency while maintaining accuracy. This study focuses on predicting the fire fragility of a steel moment frame building, accounting for uncertainties in fire size, location, and structural material properties. The fragility curve, derived from nonlinear structural behavior under fire, follows a log-normal distribution. The results demonstrate that the proposed method accurately and efficiently predicts fire fragility, showcasing its effectiveness in streamlining the analysis process.