References
- Baker, J.W. (2015) Efficient Analytical Fragility Function Fitting using Dynamic Structural Analysis, Earthq. Spectra, 31(1), pp.579~599.
- Chaboki, M., Heshmati, M., Aghakouchak, A.A. (2021) Investigating the behaviour of Steel Framed-Tube and Moment-Resisting Frame Systems Exposed to Fire, Struct. 33, pp. 1802~1818.
- Chaudhary, R.K., Roy, T., Matsagar, V. (2020) Framework for Fragility Assessment of Reinforced Concrete Portal Frame Subjected to Elevated Temperature, Struct., 28, pp.2785~2800.
- Eurocode 1 (2002) Eurocode 1: Actions on Structures - Part 1-2: General Actions - Actions on Structures Exposed to Fire, EN 1991-1-2. CEN, Brussels.
- Eurocode 3 (2005) Eurocode 3: Design of Steel Structures - Part 1-2: General Rules - Structural Fire Design, EN 1993-1-2. CEN, Brussels.
- Gernay, T., Khorasani, N.E., Garlock, M. (2019a) Fire Fragility Functions for Steel Frame Buildings: Sensitivity Analysis and Reliability Framework. Fire Technol., 55(4), pp.1175~1210. https://doi.org/10.1007/s10694-018-0764-5
- Gernay, T., Khorasani, N.E., Garlock, M. (2016) Fire Fragility Curves for Steel Buildings in a Community Context: A Methodology, Eng. Struct., 113, pp.259~276. https://doi.org/10.1016/j.engstruct.2016.01.043
- Gernay, T., Van Coile, R., Khorasani, N.E., Hopkin, D. (2019b) Efficient Uncertainty Quantification Method Applied to Structural Fire Engineering Computations, Eng. Struct., 183, pp.1~17. https://doi.org/10.1016/j.engstruct.2019.01.002
- Guo, Q., Jeffers, A.E. (2015) Finite-Element Reliability Analysis of Structures Subjected to Fire, J. Struct. Eng., 141(4), p.04014129.
- Heshmati, M., Aghakouchak, A.A. (2020) Collapse Analysis of Regular and Irregular Tall Steel Moment Frames under Fire Loading, Struct. Des. Tall & Spec. Build., 29(3), p.e1696.
- Hwang, J.Y., Kwak, H.G. (2015) A Numerical Model of Reinforced Concrete Members Exposed to Fire and After-Cooling Analysis, J. Comput. Struct. Eng. Inst. Korea, 28(1), pp.101~113.
- Izzuddin, B.A., Song, L., Elnashai, A.S., Dowling, P.J. (2000) An Integrated Adaptive Environment for Fire and Explosion Analysis of Steel Frames - Part II:: Verification and Application, J. Constr. Steel Res., 53, pp.87~111.
- JCSS (2001) JCSS Probabilistic Model Code - Part 2: Load Models, Joint Committee on Structural Safety, ISBN 978-3-909386-79-6.
- Jiang, J., Li, G.Q., Usmani, A. (2014) Progressive Collapse Mechanisms of Steel Frames Exposed to Fire, Adv. Structural Eng., 17(3), pp.381~398.
- Jiang, B., Li, G.Q., Usmani, A. (2015) Progressive Collapse Mechanisms Investigation of Planar Steel Moment Frames under Localized Fire, J. Constr. Steel Res., 115, pp.160~168. https://doi.org/10.1016/j.jcsr.2015.08.015
- Jovanovic, B., Van Coile, R., Hopkin, D., Khorasani, N.E., Lange, D., Gernay, T. (2021) Review of Current Practice in Probabilistic Structural Fire Engineering: Permanent and Live Load Modelling, Fire Technol., 57, pp.1~30. https://doi.org/10.1007/s10694-020-01005-w
- Kang, J.W., Kang, M.S., Yoon, H. (2023) Structural Fire Analysis of a Composite Beam Protected by Fire-Resistant Materials, J. Comput. Struct. Eng. Inst. Korea, 36(2), pp.137~145. https://doi.org/10.7734/COSEIK.2023.36.2.137
- Khorasani, N.E., Gardoni, P., Garlock, M. (2015) Probabilistic Fire Analysis: Material Models and Evaluation of Steel Structural Members, J. Struct. Eng., 141(12), p.04015050.
- Khorasani, N.E., Garlock, M., Gardoni, P. (2014) Fire Load: Survey Data, Recent Standards, and Probabilistic Models for Office Buildings, Eng. Struct., 58, pp.152~165.
- Lange, D., Devaney, S., Usmani, A. (2014) An Application of the PEER Performance Based Earthquake Engineering Framework to Structures in Fire, Eng. Struct., 66, pp.100~115.
- Memari, M., Mahmoud, H. (2014) Performance of Steel Moment Resisting Frames with RBS Connections under Fire Loading, Eng. Struct., 75, pp.126~138.
- Memari, M., Mahmoud, H. (2018) Multi-Resolution Analysis of the SAC Steel Frames with RBS Connections under Fire, Fire Saf. J., 98, pp.90~108.
- Ni, S., Gernay, T. (2021) A Framework for Probabilistic Fire Loss Estimation in Concrete Building Structures, Struct. Saf., 88, p.102029.
- Qin, C., Mahmoud, H. (2019) Collapse Performance of Composite Steel Frames under Fire, Eng. Struct., 183, pp.662~676.
- Qureshi, R., Van Coile, R., Hopkin, D., Thomas, G. (2022) Reliability Assessment of the US Prescriptive Standard for Steel Columns under Fire, Struct., 40, pp.711~724.
- Rubert, A., Schaumann, P. (1986) Structural Steel and Plane Frame Assemblies under Fire Action, Fire Saf. J., 10, pp. 173~184.
- Shi, K., Guo, Q., Jeffers, A. (2013) Stochastic Analysis of Structures in Fire by Monte Carlo Simulation, J. Struct. Fire Eng., 4(1), pp.37~46. https://doi.org/10.1260/2040-2317.4.1.37
- Shrivastava, M., Abu, A., Dhakal, R, Moss, P. (2019) State-of-the-Art of Probabilistic Performance Based Structural Fire Engineering, J. Struct. Fire Eng., 10(2), pp.175~192. https://doi.org/10.1108/JSFE-02-2018-0005
- Sun, R., Huang, Z., Burgess, I.W. (2012) Progressive Collapse Analysis of Steel Structures under Fire Conditions, Eng. Struct., 34, pp.400~413.
- Vaidogas, E., Juocevicius, V. (2008) Reliability of a Timber Structure Exposed to Fire: Estimation using Fragility Function, J. Mech., 73(5), pp.35~42.
- Van Coile, R., Hopkin, D., Khorasani, N.E., Gernay, T. (2021) Demonstrating Adequate Safety for a Concrete Column Exposed to Fire, using Probabilistic Methods, Fire & Mater., 45(7), pp.918~928.
- Zhu, Z., Quiel, S.E., Khorasani, N.E. (2023) Bivariate Structural-Fire Fragility Curves for Simple-Span Overpass Bridges with Composite Steel Plate Girders, Struct. Saf., 100, p.102294.