• Title/Summary/Keyword: 천이상태 성능해석

Search Result 20, Processing Time 0.026 seconds

A Study on Steady-State Performance Analysis and Dynamic Simulation for Medium Scale Civil Aircraft Turbofan Engine (I) (중형항공기용 터보팬엔진의 정상상태 성능해석 및 동적모사에 관한 연구 (I))

  • 공창덕;고광웅;기자영
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.2 no.2
    • /
    • pp.47-55
    • /
    • 1998
  • Steady-state and transient performance for the medium scale civil aircraft turbofan engine was analyzed. Steady-state performance was analyzed on maximum take-off condition, maximum climb condition, and cruise condition. At 90%RPM of the low pressure compressor, the partload performance was economized. The transient performance was analyzed with cases of the step increase, the ramp increase, the ramp decrease, and the step increase and ramp decrease for the input fuel flow. For the transient performance analysis, work matching between compressor and turbine was needed. Modified Euler method was used the integration of residual torque in work matching equation. At all flight condition, the overshoot of the high pressure turbine inlet temperature was appeared in the step and ramp increase case, and the surge of high pressure compressor was appeared in the step increase case and the ramp increase case within 5.5 seconds of maximum climb condition.

  • PDF

A Dynamic Simulation and Real-Time Linear Simulation for Mid-Class Civil Aircraft Turbofan Engine (중형항공기용 터보팬 엔진의 동적모사 및 실시간 선형모사)

  • 공창덕;기자영;고광웅
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 1998.04a
    • /
    • pp.6-6
    • /
    • 1998
  • 중형항공기용 터보팬 엔진의 정상상태 및 천이상태 성능을 해석하고 제어기 설계를 위한 선형모델을 구하였다. 정상상태 성능해석은 설계점으로 선정한 지상정지조건과 최대상승조건(Mach=0.78, 고도=36000ft) 및 순항조건(Mach=0.78, 고도=39000ft)을 고려하였으며, 저압압축기의 공회전 상태에서 최대 회전속도까지의 부분부하성능해석을 수행하였다. 부분부하 성능해석 결과 90% RPM 조건에서 가장 연료소모율이 적어 경제적임을 알 수 있다. 동적 성능모사는 각각의 대기조건에서 연료가 Step 증가, Ramp 증가 및 감소, Step 증가 후 Ramp 감소하는 경우에 대해 수행하였다. 모사결과 고려된 모든 조건에서 연료의 Step 증가시 고압압축기의 터빈입구온도가 제한온도를 초과하여, 보다 빠른 가속과 최적의 성능을 위해서는 적절한 제어가 필요함을 알 수 있었다. 또한 최대상승조건에서 연료를 Step 증가시킬 경우 고압압축기에서 실속이 발생하여 이에 대한 대책도 필요함을 알 수 있었다.

  • PDF

Two Spool Mixed-Flow Turbofan Engine Performance Analysis Modeling (2 스풀 혼합흐름 배기방식 터보팬 엔진 성능해석 모델링)

  • Seungheon Lee;Hyoung Jin Lee;Sangjo Kim;Gyujin Na;Jung Hoe Kim
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.27 no.1
    • /
    • pp.37-48
    • /
    • 2023
  • In this study, performance analysis modeling of two spool mixed flow type turbofan engine according to steady-state and transient is performed. The target engine is selected as F100-PW-229 from Pratt & Whitney, and main engine components including fan, high pressure compressors, combustion, high pressure turbines, low pressure turbines, mixer, convergent-divergent nozzle are modeled. The cooling effect of turbine through secondary flow path are considered in engine simulation model. We develop in-house Matlab/Simulink-based engine performance analysis program capable of analyzing internal engine state and compare it with GASTURB which is generally used as a commercial engine analysis program.

Steady-state and Transient Performance Simulation and Limit Control for Compressor Surge and Turbine Over-temperature of Turboprop Engine (PT6A-62) (터보프롭 엔진(PT6A-62)의 동.정적 성능모사와 압축기 서지 및 터빈 자온 제어연구)

  • 공창덕;기자영;강명철
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.6 no.2
    • /
    • pp.53-63
    • /
    • 2002
  • The steady-state and transient performance simulation program for a turboprop engine(PT6A-62) was developed. Specially this program included some algorithms, such as flat-rated behaviors in performance and limit control algorithms to prevent the compressor surge and the compressor-turbine inlet limit temperature overshoot. In order to minimize analysis errors, on interpolation method in component characteristics using matching errors and specific heat and specific heat ratio, which are functions of temperatures were used. The developed steady state performance analysis program can handle various conditions such as altitude, bleed extraction, inlet temperature and pressure and part throttle, and the transient performance analysis program incorporated a general mode for transient simulation and a control mode for prevention of the compressor surge and the turbine inlet limit temperature overshoot.

Development of Transient Simulation Program for Smart UAV Propulsion System (스마트 무인기 추진기관의 천이 모사 프로그램 개발)

  • Lee, Chang-Ho;Ki, Ja-Young
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.15 no.6
    • /
    • pp.63-69
    • /
    • 2011
  • The Smart UAV must have the control characteristics of propulsion system necessary for both rotary aircraft and fixed wing aircraft though it equips turbo-shaft engine. To develop an electronic engine controller in the future, it is necessary to accumulate the experience of engine operation and data of tilt rotor aircraft. For this purpose, the computer programs which predict engine performance in the steady state and transient state can be utilized for the supplementation of flight test data. In this work, we developed a dynamic analysis program using engine performance data gathered during the flight tests. In addition the accuracy of the program was verified through comparison with flight test data and the results of steady-state performance analysis program.

A Study on Steady-State and Transient Simulation of Turboprop Engine Using SIMULINK® Model (SIMULINK® Model를 이용한 터보프롭엔진의 정상상태 및 천이모사 연구)

  • Gong, Chang Deok;Im, Gang Taek
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.31 no.5
    • /
    • pp.100-109
    • /
    • 2003
  • A performacne simulation model of the PT6A-62 turboprop engine using the $SIMULINK^R$ was proposed to predict transient and steady state behaviors. The $SIMULINK^R$ has several advantages such as user-friendliness due to the GUI(Graphic User Interfaces) and ease in the modification of the computer program. The $SIMULINK^R$ model consists of subsystems to represent engine gas path components such as flight initial subsystem, compressor subsystem, burner subsystem, compressor turbine subsystem, power turbine, exhaust nozzle subsystem and integrator subsystem. In addition to subsystems, there are search subsystems to find an appropriate operating point by scaling from the 2-D components look-up table, Gasprop Subsystem to calculate the gas property precisely. In case of steady state validation, performance results analyzed by the proposed $SIMULINK^R$ model were agreed well with the analysis results by the commercial GASTURB program. Moreover in validation of the transient model, it was found that performance simulation results by the proposed model were reasonable agreement with analysis results by the well-proved computer program using FORTRAN.

소형항공기용 터보프롭엔진의 성능모사에 관한 연구

  • 공창덕;신현기;기자영
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2000.04a
    • /
    • pp.27-27
    • /
    • 2000
  • 소, 중형 상업용 항공기나 초등 훈련기용으로 많이 이용되고 있는 터보프롭엔진의 성능해석을 위한 프로그램을 개발하였다. 대상엔진으로는 국내 최초의 초등훈련기인 KT-1의 추진기관인 PT6A-62엔진을 선정하였고 프로그램의 검증을 위하여 지상정지조건에서의 성능, 고도에 따른 성능 및 비행마하수에 따른 성능, 그리고 고도와 비행마하수를 동시에 고려한 성능 등을 상용 프로그램인 GASTURB 및 제작사에서 제시한 성능데이터와 그 해석결과를 비교하였다. 개발된 프로그램을 이용하여 비행마하수 0.2, 100% 동력터빈 회전수에서 가스발생기 회전수를 75%에서 105%까지 5% 간격으로 나누어 부분부하 성능해석을 수행하였다. 또한 연료유량의 변화에 대한 천이상태 성능해석도 수행하였다.

  • PDF

Performance Analysis of Wireless Communication System with FSMC Model in Nakagami-m Fading Channel (Nakagami-m 페이딩 채널에서 FSMC 모델에 의한 무선 통신시스템의 성능 분석)

  • 조용범;노재성;조성준
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.8 no.5
    • /
    • pp.1010-1019
    • /
    • 2004
  • In this paper, we represent Nakagami-m fading channel as finite-State Markov Channel (FSMC) and analyze the performance of wireless communication system with varying the fading channel condition. In FSMC model, the received signal's SNR is divided into finite intervals and these intervals are formed into Markov chain states. Each state is modeled by a BSC and the transition probability is dependent upon the physical characterization of the channel. The steady state probability and average symbol error rate of each state and transition probability are derived by numerical analysis and FSMC model is formed with these values. We found that various fading channels can be represented with FSMC by changing state transition index. In fast fading environment in which state transition index is large, the channel can be viewed as i.i.d. channel and on the contrary, in slow fading channel where state transition index is small, the channel can be represented by simple FSMC model in which transitions occur between just adjacent states. And we applied the proposed FSMC model to analyze the coding gain of random error correcting code on various fading channels via computer simulation.

A Numerical Study on Transient Performance Behavior of a Turbofan Engine with Variable Inlet Guide Vane and Bleed Air Schedules (가변 입구 안내익과 블리드 공기 스케줄에 따른 터보팬 엔진에서의 천이 성능특성에 관한 수치연구)

  • Kim, Sangjo;Son, Changmin;Kim, Kuisoon;Kim, Myungho;Min, Seongki
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.19 no.5
    • /
    • pp.52-61
    • /
    • 2015
  • This paper performed a numerical study to analyse the transient performance behavior of a turbofan engine with variable inlet guide vane (IGV) and bleed air schedules. The low bypass ratio mixed flow turbofan engine was considered in this study. For modeling the compressor performance with IGV, the performance maps were generated by using a one-dimensional meanline analysis and feed to the engine simulation program. The IGV and bleed air according to the rotating speed were scheduled to satisfy 10% of surge margin at steady-state condition. The transient engine performance analysis was conducted with the schedules. The engine with IGV schedule showed a higher surge margin and lower turbine inlet temperature than the engine with bleed air schedule during the transient period.

Simulation and Analysis of Dynamic Characteristics of a Turbo-shaft Engine (터보 축 엔진의 동적특성 해석 및 시뮬레이션)

  • Kim, Se-Hyun;Kim, Hae-Dong;Park, Sung-Su;Yoon, Sug-Joon;Kim, Jae-Hwan
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.315-318
    • /
    • 2007
  • A dynamic simulation of a turbo-shaft engine was performed for analysis of transient-state and engine-starting characteristics using the MATLAB/SIMULINKTM. The turbo-shaft engine was modelled based on thermodynamic and rotor dynamic relations. The analysis of engine starting characteristics was performed by monitoring the rate of the pressure, temperature and mechanical torque changes along the engine stations by the torque input generated from the accessary power unit and transmitted to the power turbine. The simulation of the transient-state characteristics of the engine was performed under fuel flow rate increase from the steady-state condition. For the future study, engine control unit will be added to the basic turbo-shaft engine model to enhance capability of engine performance simulation.

  • PDF