• Title/Summary/Keyword: 천연우라늄

Search Result 37, Processing Time 0.023 seconds

5kg $U_3O_8$/Batch Scale Mock-up Test for the Electrochemical Reduction of Spent Oxide Fuel (사용후핵연료의 전기화학적 금속전환을 위한 5kg $U_3O_8$/Batch 규모의 Mock-up시험)

  • 오승철;허진목;홍순석;이원경;서중석;박성원
    • Proceedings of the Korean Radioactive Waste Society Conference
    • /
    • 2003.11a
    • /
    • pp.358-362
    • /
    • 2003
  • An electrochemical reduction technology which can reduce the decay heat, volume, and radioactivity of spent fuel by a factor of quarter by converting oxide type spent fuel to a metallic form in a molten salt was developed and mock-up test in a 5kg $U_3O_8$/batch scale was carried out. The electrochemical reaction was analyzed regarding the operational factors. The research efforts was also concentrated on the apparatus development for a hot test. Fresh $U_3O_8$ powder was metallized with a more than 99% yield via this electrochemical technology and design data for the 20kg $U_3O_8$/batch scale apparatus were also obtained.

  • PDF

Temperature Coefficient in D$_2$O Moderated Reactor(Wolsung Unit 1)

  • Suh, Soo-Hyun;Chang, Yo-Han;Kim, Seong yun;Kim, Dong-Hoon
    • Nuclear Engineering and Technology
    • /
    • v.9 no.3
    • /
    • pp.125-137
    • /
    • 1977
  • The temperature coefficient has been investigated on the Wolsung nuclear power reactor, in which fuel is natural uranium dioxide and moderator heavy water. The numerical computations are carried out in terms of changes of the effective neutron multiplication factor with respect to fuel, moderator, and coolant temperatures. Those results are compared with the computed values of temperature coefficient based on the LATREP computer code.

  • PDF

Evaluation of Radioactive Stack Air Effluents from the Advanced Fuel Science Building at KAERI (한국원자력연구원 새빛연료과학동 굴뚝방출 방사능 평가)

  • Chang, S.Y.;Kim, B.H.
    • Journal of Radiation Protection and Research
    • /
    • v.33 no.3
    • /
    • pp.121-126
    • /
    • 2008
  • Radioactivities of the stack air effluents from the Advance Fuel Science Building (AFSB) at KAERI have been investigated and evaluated. In this AFSB, nuclear fuels for the HANARO research reactor have been fabricated and the advanced nuclear fuels have been studied. A stack air monitoring system has been continuously operating to monitor the stack air effluents from the facility to protect the environment. As the results of the periodical radioactivity measurement and both the gamma and alpha spectrometry for the millipore filters taken from the stack air monitor from January until March 2008, a trace amount of primordial $^{40}K$ and the short-lived decay products of natural borne $^{222}Rn$ and $^{220}Rn$ have been detected. However, the radioactivities have rapidly decayed to the level below the Minimum Detectable Activity (MDA) of the counting system. Therefore, it was evaluated that no uranium isotopes have been released to the atmosphere from the stack of the AFSB at KAERI.

Characterization of Particulates Containing Naturally Occurring Radioactive Materials in Phosphate Processing Facility (인광석 취급 산업체에서 발생하는 천연방사성물질 함유 입자의 특성 평가)

  • Lim, HaYan;Choi, Won Chul;Kim, Kwang Pyo
    • Journal of Radiation Protection and Research
    • /
    • v.39 no.1
    • /
    • pp.7-13
    • /
    • 2014
  • Phosphate rock, phosphogypsum, and products in phosphate processing facility contain naturally occurring radioactive materials (NORM). Therefore, they may give rise to enhanced radiation dose to workers due to inhalation of airborne particulates. Internal dose due to particle inhalation varies depending on particle properties. The objective of the present study was to characterize particle properties at the largest phosphate processing facility in Korea. A cascade impactor was employed to sample airborne particulates at various processing areas in the plant. The collected samples were used for characterization of particle size distribution, particle concentration in the air, and shape analysis. Aerodynamic diameters of airborne particulates ranged 0.03-100 ${\mu}m$ with the highest concentration at the particle size range of 4.7-5.8 ${\mu}m$ (geometric mean = 5.22 ${\mu}m$) or 5.8-9.0 ${\mu}m$ (geometric mean = 7.22 ${\mu}m$). Particle concentrations in the air varied widely by sampling area up to more than two orders of magnitude. The large variation resulted from the variability of mechanical operations and building ventilations. The airborne particulates appeared as spheroids or rough spherical fragments across all sampling areas and sampled size intervals. Average mass densities of phosphate rocks, phosphogypsums, and fertilizers were 3.1-3.4, 2.1-2.6, and 1.7 $gcm^{-3}$, respectively. Radioactivity concentration of uranium series in phosphate rocks varied with country of origin, ranging 94-866 $Bqkg^{-1}$. Among the uranium series, uranium was mostly concentrated on products, including phosphoric acid or fertilizers whereas radium was concentrated on byproducts or phosphogypsum. No significant radioactivity of $^{226}Ra$ and $^{228}Ra$ were found in fertilizer. However, $^{40}K$ concentration in fertilizer was up to 5,000 Bq $g^{-1}$. The database established in this study can be used for the accurate risk assessment of workers due to inhalation of airborne particles containing NORM. In addition, the findings can be used as a basic data for development of safety standard and guide and for practical radiation safety management at the facility.

Characteristic Evaluation of Exposed Dose with NORM added Consumer Product based on ICRP Reference Phantom (ICRP 기준팬텀 기반의 천연방사성핵종이 포함된 가공제품 사용으로 인한 피폭선량 특성 평가)

  • Yoo, Do Hyeon;Lee, Hyun Cheol;Shin, Wook-Geun;Choi, Hyun Joon;Min, Chul Hee
    • Journal of Radiation Protection and Research
    • /
    • v.39 no.4
    • /
    • pp.159-167
    • /
    • 2014
  • In Korea, July 2012, the law as called 'Act on Safety Control of Radioactive Rays Around Living Environment' was implemented to control the consumer product containing Naturally Occurring Radioactive Material (NORM), but, there are no appropriate database and effective dose calculation system. The aim of this study was to develop evaluation technique of the exposure dose with the use of the consumer products containing NORM and to understand the characteristics of the exposed dose according to the radiation type and energy. For the evaluate of exposure dose, the ICRP reference phantom was simulated by the MCNPX code based on Monte Carlo method, and the minimum, medium, maximum energy of alphas, betas, gammas from the representative NORM of Uranium decay series were used as the source term in the simulation. The annual effective doses were calculated by the exposure scenario of the consumer product usage time and position. Short range of the alpha and beta rays are mostly delivered the dose to the skin. On the other hand, the gamma rays mostly delivered the similar dose to all of the organs. The results of the annual effective dose with $1Bq{\cdot}g^{-1}$ radioactive stone-bed and 10% radioactive concentration were employed with the usage time of 7 hours 50 minute per day, the maximum annual effective dose of alphas, betas, gammas were calculated 0.0222, 0.0836, $0.0101mSv{\cdot}y^{-1}$, respectively.

External Exposure Due to Natural Radionuclides in Building Materials in Korean Dwellings (건축자재내 포함된 천연방사성핵종에 의한 실내 공간의 방사선량 평가)

  • Cho, Yoon Hae;Kim, Chang Jong;Yun, Ju Yong;Cho, Dae-Hyung;Kim, Kwang Pyo
    • Journal of Radiation Protection and Research
    • /
    • v.37 no.4
    • /
    • pp.181-190
    • /
    • 2012
  • Naturally occurring radioactive materials (NORM) in building materials are main sources of external radiation exposure to the general public. The objective of this study was to assess external radiation dose in Korean dwellings due to NORM in concrete walls. Reference room model for dose assessment was made by analyzing room structure and housing scale of Korean dwellings. In addition, dose assessments were made for varying room sizes. Absorbed doses to air and effective dose rates were calculated using radiation transport code MCNPX. Assuming a reference room of $3{\times}4{\times}2.8m^3$, absorbed dose rates in air were 0.80, 0.97, 0.08 nGy $h^{-1}$ per Bq $kg^{-1}$ for uranium series, thorium series, and $^{40}K$, respectively. Effective dose rates were 0.57, 0.69, 0.058 nSv $h^{-1}$ per Bq $kg^{-1}$, respectively. Radiation dose resulting from concrete of ceiling and floor increased with room area while radiation dose from concrete of walls decreased with room area. Therefore, total radiation doses were almost the same for the varying room area from 5 to $30m^2$. Effective dose in Korean dwellings was calculated based on measurement data of NORM concentration in concrete and occupancy fraction of Korean population by location. Annual effective dose was 0.59 mSv assuming that indoor occupancy fraction was 0.89 and concentrations of uranium series, thorium series and $^{40}K$ were 26, 39, 596 Bq $kg^{-1}$, respectively. Finally, annual effective dose in Korean dwellings can be calculated by the following equation: Effective dose=indoor occupancy fraction${\times}8760\;h\;y^{-1}{\times}(0.57C_U+0.69C_{Th}+0.058C_K)$.

Establishment of the Physicochemical and Radiological Database of Raw Materials and By-Products in Domestic Distribution (국내 유통중인 원료물질 및 공정부산물의 물리화학적 및 방사선적 특성 데이터베이스 구축)

  • Lim, Chung-Sup;Lim, Jong-Myoung;Park, Ji-Young;Chung, Kun Ho;Kim, Chang-Jong;Chang, Byung-Uck;Ji, Young-Yong
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.14 no.4
    • /
    • pp.331-341
    • /
    • 2016
  • To evaluate the physicochemical and radiological properties of raw materials and by-products in domestic distribution, about 220 samples with 16 species were prepared. We measured the energy spectrum and the chemical content, such as U, Th, and K, using a $LaBr_3$ scintillation detector and ED-XRF. In addition, HPGe detector was used to analyze the radioac-tivity of $^{234}Th$, $^{234}mPa$, and $^{214}Bi$ in uranium decay series and $^{228}Ac$, $^{212}Pb$, and $^{208}Tl$ in thorium decay series, and $^{40}K$. The correlation between characteristic variables, such as the count rate in several ROIs, chemical content, and radioactivity, was assessed to infer the radioactivity of natural radionuclides through a rapid screening method. Based on the results, a characteristic database for raw material and by-product in domestic distribution was established and it will provide useful information in the analysis procedure and improve the accuracy and reproducibility in the analysis of natural radionuclides.

Determination of Uranium Isotopes in Spent Nuclear Fuels by Isotope Dilution Mass Spectrometry (동위원소희석 질량분석법을 이용한 사용후핵연료 중 우라늄 동위원소 정량)

  • Kim, Jung Suk;Jeon, Young Shin;Son, Se Chul;Park, Soon Dal;Kim, Jong Goo;Kim, Won Ho
    • Analytical Science and Technology
    • /
    • v.16 no.6
    • /
    • pp.450-457
    • /
    • 2003
  • The determination of uranium and its isotopes in spent nuclear fuels by isotope dilution mass spectrometry (IDMS) has been studied. The spent fuel samples were dissolved in 8 M $HNO_3$ or its mixture with 14 M $HNO_3-0.05M$ HF. The dissolved solutions were filterred on membrane filter with $1.2{\mu}m$ pore size. The uraniums in the spiked and unspiked sample solutions were quantitatively adsorbed by anion exchange resin, AG 1X8 and eluted with 0.1 M HCl. The contents of uranium and its isotopes ($^{234}U$, $^{235}U$, $^{236}U$$^{238}U$) in the spent fuel samples were determined by isotope dilution mass spectrometric method using $^{233}U$ as spike. The spike reference solution was standarized by reverse isotope dilution mass spectrometry (R-IDMS) using natural and depleted uranium. The results from IDMS were in average relative difference of 0.34% when compared with those by the potentiometric titration method.

Assessing Possible Tax Plans on Nuclear Electricity Generation in Korea (원자력 발전에 대한 과세방안 연구)

  • Sunghoon Hong
    • Environmental and Resource Economics Review
    • /
    • v.31 no.4
    • /
    • pp.711-731
    • /
    • 2022
  • In Korea, nuclear power plants are major sources of electricity supply with relatively low costs. Despite the importance and scale of nuclear electricity generation, the Korean tax and levy system is less organized than those in other countries, such as France and Japan, where nuclear power plants also play significant roles for electricity supply. Countries impose tax on nuclear electricity generation roughly in three ways: tax on nuclear reactors; tax on uranium fuel; tax on electricity from nuclear power plants. The Korean government may consider taxing nuclear electricity generation based on uranium fuel or electricity generation. If taxing on uranium fuel at the rate of 90 KRW per milligram of uranium, the Korean government can collect additional tax revenue of 430 billion KRW. If taxing on electricity from nuclear power plants at the rate of 11 KRW per kilowatt-hour, the government can collect additional tax revenue of 1,600 billion KRW.

Evaluation of Power Generation Efficiency according to Geometric Characteristics of Reservoir in Micro Vortex Hydro-electric Power Generation System (마이크로 보텍스 수력발전시스템에 있어 저수조의 기하학적 특성에 따른 발전 효율 평가)

  • Jeong, Woo Chang;Kang, Hyun Sil
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2021.06a
    • /
    • pp.432-432
    • /
    • 2021
  • 우리나라는 대부분의 에너지 공급을 해외에 의존하고 있는 실정이다. 산업통상자원부와 에너지경제연구원에서 발간하는 2018년 에너지통계연보(에너지경제연구원과 산업통상자원부, 2018)에 실린 2010년부터 2017년까지의 에너지수급 균형을 보면 원유, 천연가스, 석탄, 우라늄 등 평균 95.4%의 에너지를 수입하고 있는 실정이다. 수력 및 신재생에너지의 경우 기후변화에 대응하는 수단 그리고 정부의 저탄소에너지 전환 정책으로 인정받아 상대적으로 낮은 에너지 경제성에도 불구하고 꾸준히 보급되고 있다. 우리나라뿐만 아니라 독일, 프랑스, 영국, 중국 그리고 인도와 같은 세계 주요 국가들이 친환경 에너지 정책을 주도함에 따라 향후 신재생에너지의 공급 규모는 크게 확대될 것으로 전망된다. 중력 물 보텍스 마이크로 수력 발전 시스템은 시스템의 상하류부의 수두(hydraulic head) 차에 의해 저류조(basin)에서 발생되는 물의 보텍스 즉 소용돌이(whirlpool)를 이용하여 임펠러(impeller)를 회전시켜 전기에너지를 생산하는 친환경적 재생에너지의 일종이다. 또한, 시스템으로 유입되는 물은 전기에너지 생산을 위한 임펠러를 통과한 후 다시 하천으로 방류되므로 하천 수의 손실 그리고 하천의 물길도 거의 교란 시키지 않는다. 4가구 정도의 연간 가정용 전기 요구량인 12와 15kW 사이의 전기에너지를 생산하기 위해서는 발전시스템의 상류와 하류의 수두차가 단지 1.5에서 1.7m 이하이면 충분한 것으로 알려져 있다. 본 연구에서는 중력 물 보텍스 친환경 마이크로 발전 시스템을 구성하는 저류조(basin)에 대해 최대 발전효율을 발생시키기에 최적인 기하학적 형태를 도출하는 것이며, 이를 위해 저류조의 cone angle에 따른 다양한 저류조 직경 및 물 보텍스 생성을 위한 저류조 형태의 변화, 유입수로와 저류조와의 각도인 notch angle의 변화, 유입부 폭과 유출부 직경, 유입수로의 길이 그리고 유입수로에서의 초기수심과 같은 기하학적 매개변수를 변화시켜 모의를 수행하였다.

  • PDF