DOI QR코드

DOI QR Code

External Exposure Due to Natural Radionuclides in Building Materials in Korean Dwellings

건축자재내 포함된 천연방사성핵종에 의한 실내 공간의 방사선량 평가

  • 조윤해 (과학기술연합대학원대학교) ;
  • 김창종 (과학기술연합대학원대학교) ;
  • 윤주용 (과학기술연합대학원대학교) ;
  • 조대형 (한국원자력안전기술원) ;
  • 김광표 (경희대학교 원자력공학과)
  • Received : 2012.11.13
  • Accepted : 2012.12.10
  • Published : 2012.12.31

Abstract

Naturally occurring radioactive materials (NORM) in building materials are main sources of external radiation exposure to the general public. The objective of this study was to assess external radiation dose in Korean dwellings due to NORM in concrete walls. Reference room model for dose assessment was made by analyzing room structure and housing scale of Korean dwellings. In addition, dose assessments were made for varying room sizes. Absorbed doses to air and effective dose rates were calculated using radiation transport code MCNPX. Assuming a reference room of $3{\times}4{\times}2.8m^3$, absorbed dose rates in air were 0.80, 0.97, 0.08 nGy $h^{-1}$ per Bq $kg^{-1}$ for uranium series, thorium series, and $^{40}K$, respectively. Effective dose rates were 0.57, 0.69, 0.058 nSv $h^{-1}$ per Bq $kg^{-1}$, respectively. Radiation dose resulting from concrete of ceiling and floor increased with room area while radiation dose from concrete of walls decreased with room area. Therefore, total radiation doses were almost the same for the varying room area from 5 to $30m^2$. Effective dose in Korean dwellings was calculated based on measurement data of NORM concentration in concrete and occupancy fraction of Korean population by location. Annual effective dose was 0.59 mSv assuming that indoor occupancy fraction was 0.89 and concentrations of uranium series, thorium series and $^{40}K$ were 26, 39, 596 Bq $kg^{-1}$, respectively. Finally, annual effective dose in Korean dwellings can be calculated by the following equation: Effective dose=indoor occupancy fraction${\times}8760\;h\;y^{-1}{\times}(0.57C_U+0.69C_{Th}+0.058C_K)$.

건축자재에 포함된 천연방사성핵종은 실내공간에 거주하는 일반인의 주요 피폭선원이다. 본 연구에서는 콘크리트 벽체에 존재하는 천연방사성 핵종에 의한 한국인의 실내에서의 외부피폭 방사선량을 평가하였다. 한국인의 주거실태, 실내공간의 크기 등을 고려하여 선량평가를 위한 표준 방의 크기를 결정하였다. 표준 방 이외의 다양한 크기의 공간에 대해서도 선량평가를 실시하였다. 방사선수송 코드인 MCNPX를 사용하여 실내공간에서의 공기 중 흡수선량을 계산하였으며, 이를 이용하여 유효선량률을 계산하였다. 콘크리트 벽체로만 이루어진 $3{\times}4{\times}2.8m^3$ 크기의 표준 방의 경우, 콘크리트 내 우라늄계열, 토륨계열, $^{40}K$ 핵종의 농도에 따라 공기 중 흡수선량률은 0.80, 0.97, 0.08 nGy $h^{-1}$ per Bq $kg^{-1}$이었으며, 유효선량률은 0.57, 0.69, 0.058 nSv $h^{-1}$ per Bq $kg^{-1}$이었다. 실내공간의 크기를 $5-30m^2$로 다양하게 변화시키더라도 천장/바닥 그리고 벽에 의한 상반된 선량률 변화로 인하여 전체 방사선량률은 실내 면적의 변화에 상관없이 거의 일정한 값을 보였다. 실제 국내에서 주로 사용되는 콘크리트 내의 천연방사성 핵종의 농도 및 한국인의 실내공간에서 생활양식 등을 토대로 한국인의 실내공간에서의 외부피폭 방사선량률 및 연간 유효선량을 평가하였다. 콘크리트 내의 우라늄계열, 토륨계열, $^{40}K$ 핵종의 농도가 각각 26, 39, 596 Bq $kg^{-1}$인 경우 공기 중 흡수선량률은 대략 104 nGy $h^{-1}$이었다. 일반인의 실내 점유율이 89%인 경우, 연간 유효선량은 0.59 mSv이었다. 국내의 일반적인 실내공간에서 콘크리트 벽체 내에 존재하는 천연방사성물질에 의한 연간 유효선량은 실내점유율${\times}8760\;h\;y^{-1}{\times}(0.57C_U+0.69C_{Th}+0.058C_K)$을 이용하여 계산할 수 있다.

Keywords

References

  1. United Nations Scientific Committee on the Effects of Atomic Radiation. Sources and effects of ionizing radiation. Vol. I Sources. 2000.
  2. United Nations Scientific Committee on Effects of Atomic Radiation. Sources and effects of ionizing radiation. UNSCEAR 2008 Report to the General Assembly with Scientific Annexes. Volume I. 2010.
  3. Risica S, Bolzan C, Nuccetelli C. Radioactivity in building materials: room model analysis and experimental methods. Sci. Total Environ. 2001; 272:119-26. https://doi.org/10.1016/S0048-9697(01)00675-1
  4. Allam KA. New model for dwelling dose calculation using monte carlo integration. Radiat. Prot. Dosim. 2009;133:153-157. https://doi.org/10.1093/rpd/ncp026
  5. Maduar MF, Hiromoto G. Evaluation of indoor gamma radiation dose in dwellings. Radiat. Prot. Dosim. 2004;111:221-228. https://doi.org/10.1093/rpd/nch329
  6. Al-Jundi J, Ulanovsky A, Prohl G. Doses of external exposure in Jordan house due to gamma-emitting natural radionuclides in building materials. J. Environ. Radioact. 2009;100:841-846. https://doi.org/10.1016/j.jenvrad.2009.06.010
  7. Koblinger, L. Calculation of exposure rates from gamma sources in walls of dwelling rooms. Health Physics. 1978;34:459-463. https://doi.org/10.1097/00004032-197805000-00006
  8. Moharram BM, Suliman MN, Zahran NF, Shennawy SE, El Sayed AR. External exposure doses due to gamma emitting natural radionuclides in some Egyptian building materials. Appl. Radiat. Isot. 2012;70:241-248. https://doi.org/10.1016/j.apradiso.2011.07.013
  9. European Commission. Radiation protection principles concerning the natural radioactivity of building materials. Radiation Protection 112. 1999.
  10. Radiation and Nuclear Safety Authority. Radiation dose assessments for materials with elevated natural radioactivity. STUK-B-STO 32. 1995.
  11. Mustonen, R. Methods for evaluation of radiation from building materials. Rad. Prot. Dosim. 1984;7: 235-238.
  12. 통계청. 국가통계포털 - 행정구역별 주택현황. 2012.
  13. 환경부. 한국형 노출지수 개발 및 운영체계 구축. GOVP1200812666. (2007).
  14. Lee JH, Lee C. Analytical study for the plan of unit household in national housing scale - Oriented on the cases of Korean housing corporation since 2005: Focused on analysing area. Journal of the Korean Institute of Interior Design. 2010;19: 180-189.
  15. Hubbell JH, Seltzer SM. Tables of x-ray mass attenuation coefficients and mass energyabsorption coefficients from 1 keV to 20 MeV for elements Z=1 to 92 and 48 additional substance. National Institute of Standards and Technology. 2004.
  16. Al-Sulaiti H, Nasir T, Al Mugren KS, Alkhomashi N, Al-Dahan N, Al-Dosari M, Bradley DA, Bukhari S, Matthews M, Regan PH. Determination of the natural radioactivity levels in north west of Dukhan, Qatar using high-resolution gamma-ray spectrometry. Appl. Radiat. Isot. 2011;70:1344- 1350.
  17. 한국토지주택공사. 주택분야 건출설계 지침. 2010.
  18. International Commission on Radiological Protection. The 2007 recommendations of the International Commission on Radiological Protection. ICRP Publication 103. Oxford; Pergamon Press. 2007.
  19. International Commission on Radiological Protection. Adult reference computational phantoms. ICRP Publication 110. Oxford; Pergamon Press. 2009.
  20. International Commission on Radiological Protection. Conversion coefficients for radiological protection quantities for external radiation exposures. ICRP Publication 116. Oxford; Pergamon Press. 2010.
  21. International Commission on Radiological Protection. Conversion coefficients for use in radiological protection against external radiation. ICRP Publication 74. Oxford; Pergamon Press. 1997.
  22. Lee SC, Kim CK, Lee DM, Kang HD. Natural radionuclides contents and radon exhalation rates in building materials used in South Korea. Radiat. Prot. Dosim. 2001;94:269-274. https://doi.org/10.1093/oxfordjournals.rpd.a006499
  23. Trevisi R, Risica S, D'Alessandro M, Paradiso D, Nuccetelli C. Natural radioactivity in building materials in the European Union: a database and an estimate of radiological significance. J. Env. Radioact. 2012;105:11-20. https://doi.org/10.1016/j.jenvrad.2011.10.001
  24. 한국원자력안전기술원. 우리나라의 방사선 환경. KINS/GR-256. 2009.

Cited by

  1. Radioactivity concentration measurement and analysis in construction floor materials of Korea vol.171, pp.5-6, 2016, https://doi.org/10.1080/10420150.2016.1213728
  2. Analysis of Dose by Items According to Act on Safety Control of Radiation Around Living Environment vol.7, pp.6, 2013, https://doi.org/10.7742/jksr.2013.7.6.377
  3. Evaluation of Radiation effective dose by Naturally Radionuclides in the Soil of Busan vol.15, pp.6, 2014, https://doi.org/10.5762/KAIS.2014.15.6.3658
  4. Measuring and analyzing the radioactivity released from construction floor materials vol.172, pp.5-6, 2017, https://doi.org/10.1080/10420150.2017.1343331
  5. Status and geochemical characteristics of the constructional aggregate in Gangwon area vol.55, pp.3, 2019, https://doi.org/10.14770/jgsk.2019.55.3.365