• Title/Summary/Keyword: 처짐식

Search Result 152, Processing Time 0.025 seconds

An Estimation of Panel Deflection at Engine Room Upper Deck for the Ship Under Construction (건조중인 선박에서의 기관실 상갑판 판부재의 처짐 예측)

  • Juh-H. Ham;Ul-N. Kim
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.31 no.3
    • /
    • pp.119-128
    • /
    • 1994
  • Deflection estimation at engine room upper deck panel is performed for the actual ship structure. These deflection behaviours are basically investigated from not only the data based on the full series results of nonlinear analysis using Incremental Galerkin's Method but also actual deflection data measured from damaged ship under construction in dry dock. The effects of residual stress, initial deflection and static loading are also included. The computed estimation results of upper deck plate panel including theme effects are shown that upper deck platings of new ship expected less deflection magnitude than damaged ship.

  • PDF

Calculation of Deflection Using the Acceleration Data for Concrete Bridges (가속도 계측 자료를 이용한 콘크리트 교량의 처짐 산정)

  • Yun, Young Koun;Ryu, Hee Joong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.15 no.5
    • /
    • pp.92-100
    • /
    • 2011
  • This paper describes a numerical modeling for deflection calculation using the natural frequency response that is measured acceleration response for concrete bridges. In the formulation of the dynamic deflection, the change amounts and the transformed responses about six kinds of free vibration responses are defined totally. The predicted response can be obtained from the measured acceleration data without requiring the knowledge of the initial velocity and displacement information. The relationship between the predicted response and the actual deflection is derived using the mathematical modeling that is induced by the process of a acceleration test data. In this study, in order to apply the proposed response predicted model to the integration scheme of the natural frequency domain, the Fourier Fast Transform of the deflection response is separated into the frequency component of the measured data. The feasibility for field application of the proposed calculation method is tested by the mode superposition method using the PSC-I bridges superstructures under several cases of moving load and results are compared with the actually measured deflections using transducers. It has been observed that the proposed method can asses the deflection responses successfully when the measured acceleration signals include the vehicle loading state and the free vibration behavior.

Study on Deflection Evaluation for High-strength Concrete of KCI Specification and Eurocode 2 (콘크리트구조설계기준과 Eurocode 2의 고강도 콘크리트 처짐 산정에 관한 연구)

  • Lee, In-Ju;Kim, Tae-Wan;Kim, Sung-Hu;Son, Chang-Du;Park, Sun-Kyu
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.989-992
    • /
    • 2008
  • Recently, high-strength concrete has been frequently used for long-span bridges and high-rise buildings. Deflection of reinforced concrete structures is uncertain, so that many researchers have proposed various equations in order to predict deflection through experiments. Domestic concrete specification offers a procedure to evaluate deflection using effective moment of inertia which was proposed by Branson. However, it is inaccurate for high strength concrete compared to the method suggested in Eurocode 2 in that Eurocode 2 predicts deflection by using curvature integration of effective moment of inertia. In this study, experimental data about deflection of reinforced concrete beams were analyzed to compare domestic standard and Eurocode 2.

  • PDF

Simplified Evaluation of Long-Term Deflection of Reinforced Concrete Flexural Members (철근콘크리트 휨재의 장기처짐 예측을 위한 간략 평가)

  • Chang, Dong-Woon;Kang, Jee-Hoon;Chae, Seung-Yoon;Kim, Jae-Yo;Eom, Tae-Sung
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2011.04a
    • /
    • pp.6-9
    • /
    • 2011
  • 지속하중을 받는 철근콘크리트 휨부재는 크리프, 건조수축 등 장기거동에 의하여 처짐이 증가된다. ACI318-08, KCI 2007 등 현행 구조설계기준의 장기처짐 평가방법은 인장 및 압축 철근비, 배근상세, 재료 강도 등 설계변수에 따른 장기처짐의 변화를 합리적으로 고려하기 어렵다. 본 연구에서는 장기거동에 의한 힘의 평형조건과 변형률 적합조건을 사용하여 크리프와 건조수축에 의한 철근콘크리트 균열단면의 장기변형을 예측하는 간략 평가식을 제안하였다. 장기변형 평가 시 콘크리트와 철근은 선형탄성거동을 가정하였고, 시간에 따른 콘크리트와 철근 사이의 응력재분배를 고려하기 위하여 재령보정탄성계수법을 적용하였다. 변수연구 및 검증 결과, 철근콘크리트 휨재의 장기처짐은 설계변수의 영향으로 달라질 수 있고, 제안된 방법은 이러한 장기처짐의 변화를 비교적 정확하게 예측하는 것으로 나타났다.

  • PDF

Experimental Study on Deflection Evaluation of KCI specification and Eurocode 2 (콘크리트 구조 설계기준과 Eurocode 2의 처짐 산정에 관한 실험적 고찰)

  • Lee, In-Ju;Kim, Tae-Wan;Oh, Seok-Mim;Kim, Jun-Won;Park, Sun-Kyu
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.141-144
    • /
    • 2008
  • Deflection in terms of serviceability of reinforced concrete structures is considered as one of significant factor. Domestic concrete specification offers a procedure to evaluate deflection using effective moment of inertia at cracked section, which has been known as Branson's equation in ACI. Branson's equation was derived from statistical analysis of maximum deflection of flexural members, but is somewhat weak in no reflection of bond characteristics between reinforced bars and concrete, such as tension stiffening effect. Therefore, present code creates difference from actual deflection. In this study, experiments about deflection of RC beams was completed to compare domestic standard and Eurocode 2, which calculates deflection considering tension stiffening effect. Four RC beams were built and tested, and initial modulus of elasticity and tensile strength of concrete used in the test was calculated by each design standard.

  • PDF

A Study on Evaluation of Moduli of 3 Layered Flexible Pavement Structures using Deflection Basins (처짐곡선을 이용한 3층 아스팔트 포장 구조체의 물성 추정에 관한 연구)

  • Kim, Soo Il;Kim, Moon Kyum;Yoo, Ji Hyeung
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.9 no.1
    • /
    • pp.97-107
    • /
    • 1989
  • An inverse self-iterative procedure is developed to estimate layer moduli of 3 layered flexible pavement structures from FWD deflection basins. The theoretical deflection basins of pavement structures obtained by full factorial design are used for the parametric study on the characteristics of deflection basins and the regression analysis. The factorial design is performed for asphalt pavement structures with stabilized base layer and granular base layer, respectively. The initially assumed layer moduli by regression equations and relations between the rate of change of moduli and deflections are used in the procedure to ensure efficiency and accuracy of self-iterative model. The SINELA computer program is used for inverse self-iterative applications to determine theoretical responses. The computer program of this procedure is coded for personal computers and is verified through numerical model tests.

  • PDF

An Iterative Method to Determine Deformed Shape of Cable (케이블 처짐 형상 결정을 위한 반복 계산법의 개발)

  • 정진환;조현영;박용명;계만수
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.15 no.4
    • /
    • pp.715-725
    • /
    • 2002
  • In this study, a method to determine the deformed shape of planar cable under vertical loads was presented. To obtain the deformed shape of cable by general cable theorem, a sag at arbitrary point is usually given. However, in general cases without a given sag, the proposed method determines the deformed shape of cable based on the equations of cable theorem and geometric compatibility by iterative way. The method was also extended to slove extensible cable. It was acknowledged from numerical analysis and model tests in laboratory that the proposed method is valid lot analysis of extensible cable as well as unextensible cable.

Evaluation on Expectation of Deflection of Floor Damping Materials Subjected to Long-Term Load (장기하중을 받는 바닥완충재의 처짐 예측 평가)

  • Kim, Jung-Min;Hong, Yoon-Ki;Kim, Jin-Koo;Lee, Jung-Yoon
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.20 no.4
    • /
    • pp.19-26
    • /
    • 2016
  • Floor damping materials used in floating floor system to diminish the floor noise have been made with low density and dynamic stiffness. Owing to this low density and dynamic stiffness, the deflection in these materials under long-term loading and cracking of the floor finishing mortar in the floating floor system may occur. This paper presents the results of long-term loading effects on the deflection of different types of floor damping materials. The experimental program involved the long-term loading tests for 490 days loading period on sixteen specimens. Specimens were classified as DM1(Damping Materials) to DM8, depending upon the four main parameters; types, bottom shapes and densities of floor damping materials and amount of loading. Results indicated that the long-term deflection of all specimens of damping materials remained unchanged after 200 days at all loading amounts, except the specimens made up of Polystrene, in which long-term deflection remained unchanged after 160 days at 250 N load and 100 days 500 N load. In this paper, two types of correlation expressions were shown in the deflection range prior to the range where deflection remained constant; two analyses by ISO 20392 and linear regression. In comparison of two analyses and experimental results on the difference of deflection of 16 specimens, the difference of deflection was below 0.4 mm in those analyses in case of that total deflection was below 10 mm. Restrictively, it was judged that the analysis for the deflection of specimens made up of Polystrene is more appropriate using ISO 20392.

Deflection Behavior of Concrete Members Reinforced with FRP Bars (FRP-보강근 콘크리트 부재의 처짐 거동)

  • Choi, Bong-Seob
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.2
    • /
    • pp.936-943
    • /
    • 2011
  • The effective moment of inertia revising the expression proposed by Branson has been used in ACI 440.1R-06 design guide for calculating deflections of FRP-reinforced concrete members. However, its adequacy has been questioned by several researchers. The propose of this study is to provide fundamental data for the rational design of deflection by the comparison of the experimental results obtained from twelve specimens with rectangular section and nine specimens with T-shaped section to the theoretical results. As a result, it found that calculated results for specimens with rectangular section were underestimated comparing to test results, while calculated results for specimens with T-shaped section were overestimated comparing to test results.

A Study on the Measurement of Rigidities of Stiffened Plates by Vibration Method (振動法 에 의한 補强平板 의 剛性測定硏究)

  • 김천욱;남준우;원종진;한승봉
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.9 no.2
    • /
    • pp.174-180
    • /
    • 1985
  • A new measuring technique for the rigidities of stiffened plated is presented. The equations relating the rigidities of stiffened plates and the natural frequencies of a cantilever plate are derived and the rigidities are determined using the measured natural frequencies of the plate. The static deflection tests are conducted for checking the validity of this method. For unstiffened plates the measured rigidities are good agreement with the theoretical values and the experimental results of deflection tests. In the case of stiffened plates the measured rigidities closely matched with the results of deflection tests. It has been also demonstrated that this measuring technique can be utilized in determining the rigidities of arbitrarily stiffened plates.