• 제목/요약/키워드: 처짐비

Search Result 304, Processing Time 0.026 seconds

Deflection Limits based on the Vibration Serviceability of Guideway Structures Considering Maglev Train-Guideway Interaction (자기부상열차와 가이드웨이 상호작용을 고려한 가이드웨이 구조물의 진동사용성 처짐 한계)

  • Lee, Jin Ho;Kim, Sung Il
    • Journal of the Korean Society for Railway
    • /
    • v.20 no.1
    • /
    • pp.111-119
    • /
    • 2017
  • In this study, deflection limits based on the vibration serviceability of guideway structures are proposed considering maglev train-guideway interaction. Equations of motion are derived for a simplified maglev railway. Feedback constants for the control of the electromagnetic force for levitation are optimized in order to minimize the airgap fluctuations. Deflection limits for a guideway are calculated for various operating speeds of a maglev train, span lengths of a guideway, and natural frequencies and damping ratios of the second suspension in order to satisfy the serviceability criteria for airgaps and for the vertical acceleration of a cabin. From the analysis results, proposed are requirements for the second suspension of maglev trains and deflection limits for guideway structures.

Secondary Buckling Behaviour of Plate under Inpane Compressive Loading (면내압축하중(面內壓縮荷重)을 받는 판(板)의 2차좌굴거동(次座屈擧動)에 관한 연구(硏究))

  • J.Y. Ko;T. Yao;J.K. Paik
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.33 no.3
    • /
    • pp.66-80
    • /
    • 1996
  • Recently, HT steel has been widely used in structure, and this enables to reduce the plate thickness. To use the HT steel effectively for a ship hull, the plate thickness becomes thin so that plate buckling may take place. Therefore, precise assessment of the behaviour of plat above primary buckling load is important. The plate under the load, that is called, secondary buckling load may undergo abrupt changes in wave form after primary buckling. This is very important when the collapse strength of the whole structures is considered. From this point of view, this paper discusses secondary buckling behaviour of thin plate under inplane compressive loading. A elastic large deflection analysis of plates with initial imperfection is performed assuming uniaxial compression, respectively, and the influence of secondary buckling is investigated. It is known that square plate is not influenced by non-symmetrical deflection coefficient but influenced by symmetrical deflection coefficient. Also, it has been found that rectangular plate($\alpha$=a/b) is influenced by all deflection coefficient, and the reduction of inplane stiffness of the plate after primary buckling is continued.

  • PDF

Correlation Between Crack Widths and Deflection in Reinforced Concrete Beams (철근콘크리트 보의 균열 폭과 처짐 관계)

  • Kang, Ju-Oh;Kim, Kang-Su;Lee, Deuck-Hang;Lee, Seung-Bea
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.14 no.2
    • /
    • pp.184-192
    • /
    • 2010
  • The member deflection is one of the most important considerations for the serviceability evaluation of reinforced concrete (RC) structures, and the concept of the effective moment of inertia has been generally used for its estimation. However, the actual service load applied on an existing RC beam may not be easily obtained, for which the estimation of beam deflection by existing methods can be difficult to obtain. Therefore, based on the correlation between cracks and deflection in a RC beam, this study proposed a method to estimate the deflection of RC beams directly from the condition of cracks not using the actual loads acting on the member as its input data. The proposed method extensively utilized the relationships among sums of crack widths, average strains, and curvatures, and modification factors obtained from regression analysis were also introduced to improve its accuracy. The deflections of members were successfully estimated by the proposed method independent from applied loads, which was also easy to apply compared to the existing methods based on the effective moment of inertia.

Safety Evaluation of Void Plywood Slab System with form Work Panel (거푸집 패널이 부착된 중공슬래브의 안전성 평가)

  • Hur, Moo-Won;Chae, Kyoung-Hun;Park, Tae-Won;Kang, Hyun-Wook;Park, Hyun-Soo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.25 no.6
    • /
    • pp.185-192
    • /
    • 2021
  • In this study, Full-scale hollow slab Mock-up with VPS(Void Plywood Slab System) was produced. Through Mock-up, the safety of the flat plate hollow slab against short-term sagging and long-term sagging is to be evaluated. The hollow rate of the mock-up specimen to which the hollow core slab was applied was designed to be 24%. When loading through concrete blocks, the most central part of the slab was deflection 8.88mm when loading. However, it shows a safe value compared to the reference value (ln/240=17.93mm) for short-term deflection. As a result of 3 months of measurement of the mock-up experiment, the deflection at the center of the slab increased by 6.792mm from the initial deflection. In addition, it was found that the reference value by the load used suggested by KBC2016 was satisfied.

3층 규모 건물이 있는 콘크리트 플로팅 함체의 설계 연구

  • Lee, Yeong-Uk;Park, Jeong-A;Choe, Ji-Hun;Park, Tae-Jun
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2012.06a
    • /
    • pp.419-421
    • /
    • 2012
  • 높이 2.5m의 콘크리트 플로팅 함체에 3층 규모의 상부골조가 있는 예제에 대해 동적 유체 해석과 정적 구조 해석을 수행하고 그 결과에 따라 종방향설계, 함체의 상부 및 하부 슬래브, 외벽 및 격벽에 대한 설계를 수행하였다. 환경 하중은 새만금 방파제 내부 정수역을 기준으로 파도주기 3.7초, 유의파고 1.0m와 풍속 40m/s를 적용하였으며, 하중조합은 ASCE/SEI 7-10을 기준으로 설계 하였다. 예제 구조물에 대한 설계 결과 고정하중에 의한 영향이 활하중 및 파랑하중에 비해 크게 나타났으며, 이로 인해 중앙부의 철근비가 높아지므로 고정하중을 감소시키는 방안을 검토하여야 함을 확인하였다. 또한 보의 지속하중에 의한 장기처짐과 추가적인 활하중에 의한 순간 처짐의 값이 허용 처짐값보다 크므로 보에서의 프리스트레싱을 고려해야 할 것으로 판단된다.

  • PDF

Limiting Height Evaluation for Cold-Formed Steel Wall Panels (냉간성형강재 벽체 패널의 한계높이 산정)

  • Lee, Young ki;Miller, Thomas H.
    • Journal of Korean Society of Steel Construction
    • /
    • v.15 no.1
    • /
    • pp.17-24
    • /
    • 2003
  • This study aimed to develop experiment-based limiting heights for interior, nonload-bearing, cold-formed steelwall panels sheathed with gypsum board and subjected to uniformly distributed lateral loadings. Th e limiting heightswere evaluated by their strength (for flexure, shear, and web crippling) and deflection. Limiting heights for deflectionlimits of L/360, L/240, and L/120 (where L is the height of the wall) were developed over the range of typical designpressures.

An Experimental Study on Flexural Behavior of Beams Reinforced with Zinc-Coated Rebar (아연코팅 철근콘크리트 보의 휨 거동 실험 연구)

  • Yang, In-Hwan;Kim, Kyong-Chul
    • Journal of the Korea Concrete Institute
    • /
    • v.26 no.3
    • /
    • pp.299-306
    • /
    • 2014
  • Coating is one of the methods used to solve the problem of corrosion of reinforcement in concrete structures. There are few research reported in the literature regarding the effect of zinc-coating on flexural behavior compared to epoxy coating. The objective of this study was to determine whether zinc-coated rebar adversely affects flexural behavior. Concrete beams reinforced with black or zinc-coated steel were tested in flexure. The test variables included the presence of rebar surface coating with zinc, steel ratio used and cover depth. The study concentrated on comparing crack pattern, crack width, deflection and strain. The ultimate flexural capacity of beams reinforced with zinc-coated bars was not different from that of black steel reinforced beams. The results from deflection and crack width measurements were indicative of no significant variation for the different rebar surface conditions. In addition, it was found that load-strain curve of beam reinforced with zinc-coated steel was similar to that of beam reinforced with zinc-coated steel. Therefore, the test results indicated that the use of zinc-coated rebar had no adverse effect on flexural behavior compared to the use of black rebar.

Relationship between crack width and deflection in reinforced concrete beam (철근콘크리트 보의 균열폭과 처짐 관계)

  • Lee, Seung-Bae;Kim, Kang-Su;Kang, Ju-Oh;Choi, Jin-Young;Park, Mi-Yeung;Kim, Sang-Sik
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.293-296
    • /
    • 2008
  • The member deflection is one of the most important considerations for the serviceability evaluation of reinforced concrete (RC) structures, and the concept of the effective moment of inertia has been generally used for its estimation. However, the actual service load applied on an existing RC beam may not be easily obtained, for which the estimation of beam deflection by existing methods can be difficult work. Therefore, based on the close relationships between cracks and deflection in a RC beam, this study proposed a method to estimate the deflection of RC beams directly from the condition of cracks not using the actual loads acting on the member as its input data. The proposed method extensively utilized the relationships among sums of crack widths, average strains, and curvatures, and modification factors obtained from regression analysis were also introduced to improve its accuracy. The deflections of members were successfully estimated by the proposed method independent from applied loads, which was also easy to apply compared to the existing methods based on the effective moment of inertia. This new method, however, has limitations in its applicability in that it is less accurate than the existing methods because the magnitude of acting load is not involved in the estimation process of member deflection, and that it requires the measurement of crack widths along the whole length of a member.

  • PDF

Two-Demensional Nonlinear Analysis of Precast Segmental PSC-I Girder with Wet Joint (습식접합부를 갖는 프리캐스트 세그먼트 PSC-I형 거더의 2차원 비선형해석)

  • Kim, Kwang-Soo;Hong, Sung-Nam;Han, Kyoung-Bong;Park, Sun-Kyu
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.11 no.6
    • /
    • pp.103-112
    • /
    • 2007
  • The purpose of this study is to evaluate the characteristics of the structural behavior in precast segmental prestressed concrete girders, which consist of five precast segments. These girders were developed to save labor and cost in construction field reducing a term of work. Therefore, four different types of specimens of 25m in length were built, and they were tested and analyzed for observing flexural behavior. The analysis included the investigation of the flexural behaviors in varying tendon amount and at joints using the relationship between moment and deflection. Moreover, nonlinear finite element analysis was utilized to verify the experimental result.

An Experimental Study on the Fracture Energy of Steel Fiber Reinforced Concrete Structures by the Effects of Fiber Contents (강섬유 혼입량에 의한 강섬유보강콘크리트의 파괴에너지에 관한 실험적 연구)

  • 장동일;채원규;정원우;손영환
    • Magazine of the Korea Concrete Institute
    • /
    • v.3 no.4
    • /
    • pp.79-88
    • /
    • 1991
  • In this study, fracture tests were carried out in order to investigate the fracture behavior of SFRC(Steel Fiber Peinforced Concrete) with initial cracks. The relationships between loading. strain, mld-span deflections and CMOD(Crack Mouth Opening Displacement) of the beams were observed under the three point loading system. The effect of the fiber content and the initial crack ratio on the concrete fracture behavior were studied and the fracture toughness, the critical energy release ratio and the fracture energy were also calcul ated from the test results. From the test results, it was known that when the fiber contents are between 0.5% and 1.0%, and 1.5% the average fracture energy of SFRC specimens is about 7~10 times. and about 15 times better than that of the plam concrete specimens respectively.ively.