• Title/Summary/Keyword: 처짐곡선

Search Result 76, Processing Time 0.02 seconds

Dynamic Structural Response Characteristics of Stiffened Blast Wall under Explosion Loads (폭발 하중을 받는 보강된 방폭벽의 동적 구조 응답 특성에 관한 연구)

  • Kim, Sang Jin;Sohn, Jung Min;Lee, Jong Chan;Li, Chun Bao;Seong, Dong Jin;Paik, Jeom Kee
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.51 no.5
    • /
    • pp.380-387
    • /
    • 2014
  • Piper Alpha disaster drew attention to the damage likely to arise from explosions and fires on an offshore platform. And great concerns have been increased to prevent these hazards. Blast wall is one of the passive safety systems; it plays a key part of minimizing the consequences. However, a buckling due to explosion loads is a factor which can reduce the strength of blast wall. The buckling often occurs between web and flange at the center of blast wall. This study aims to find a solution for reinforcing its strength by installing a flat plate at the spot where the buckling occurs. First of all, ANSYS finite element method is adopted to numerically compute the structural resistance characteristic of blast wall by using a quasi-static approach. Sequentially, the impact response characteristics of blast wall are investigated the effect on thickness of flat plate by using ANSYS/LS-DYNA. Finally, pressure-impulse diagrams (P-I diagram) are presented to permit easy assessment of structural response characteristics of stiffened blast wall. In this study, effective use is made to increase structural intensity. of blast wall and acquired important insights have been documented.

Prediction of Transmission Error Using Dynamic Analysis of a Helical Gear (헬리컬기어의 동적해석을 통한 전달오차 예측)

  • Lee, Jeongseok;Yoon, Moonyoung;Boo, Kwangsuk;Kim, Heungseob
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.40 no.12
    • /
    • pp.1005-1011
    • /
    • 2016
  • The fundamental reason for gear noise is transmission error. Transmission error occurs because of STE (static transmission error) and DTE (dynamic transmission error), while a pair of gears is meshing. These errors are generated by the deflection of the teeth and the friction on the surface of the teeth. In addition, the vibration generated by transmission error leads to excited bearings. The bearings support the shafts, and the noise is radiated after exciting the gear casing. The analysis of the contact stress in helical gear tooth flanks indicates that it is due to impact loading, such as the sudden engagement and disengagement of a gear. Stress analysis is performed for different roll positions, in order to determine the most critical roll angle. Dynamic analysis is performed on this critical roll position, in order to evaluate variation in stresses and tooth contact force, with respect to time. In this study, transmission error analysis was implemented on a spur and helical gear with involute geometry and a modified geometry profile. In addition, in order to evaluate the intensity of impact due to sudden engagement and significant backlash, the impact factor was calculated using the finite element analysis results of static and dynamic maximum bending stresses.

Dynamic Interaction Evaluation of Maglev Vehicle and the Segmented Switching System (자기부상열차 차량과 분기기 동적상호작용 시험 평가)

  • Lee, Jong-Min;Han, Jong-Boo;Kim, Sung-Soo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.2
    • /
    • pp.576-582
    • /
    • 2017
  • The switching system in a maglev train is an indispensable element for distributing train routes, and it should be designed to ensure safe operation. Unlike conventional wheels on rails, the switching track in EMS-type maglev is supported by a group of 3 to 4 steel girders. When the vehicle changes its route, the segmented track allows the girders to change from a straight position to a curved one with a small radius of curvature. Hence, the structural characteristics of the segmented switching system may affect the levitation stability of the maglev vehicle. This study experimentally evaluates the dynamic interaction between maglev vehicles and a segmented switching system. The results may be helpful for improving the switching system. The measured levitation and lateral air gaps were evaluated at a vehicle speed of 25 km/h, and the ride quality of the Maglev vehicle was determined to be "comfortable" according to the UIC 513 standard.

Applicability Analysis of the FE Analysis Method Based on the Empirical Equation for Near-field Explosions (근거리 폭발에 대한 경험식 기반 유한요소해석 방법의 적용성 분석)

  • Hyun-Seop, Shin;Sung-Wook, Kim;Jae-Heum, Moon
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.35 no.6
    • /
    • pp.333-342
    • /
    • 2022
  • The blast analysis method entails the use of an empirical equation and application of the pressure-time history curve as an explosive load. Although this method is efficient owing to its simple model and short run time, previous studies indicate that it may not be appropriate for near-field explosions. In this study, we investigated why different results were observed for the analysis method by considering an RC beam under near-field explosion conditions with the scaled distance of 0.4-1.0 as an example. On this basis, we examined the application range of the empirical analysis method by using the finite element analysis program LS-DYNA. The results indicate that the empirical analysis method based on data from far-field explosion tests underestimates the impulse. Thus, the calculated deflection of the RC beam would be smaller than the measured deflection and arbitrary Lagrangian-Eulerian (ALE) analysis result. The ALE analysis method is more suitable for near-field explosion conditions wherein the structural responses are large.

Nonlinear Analysis of Concrete Girders Strengthened with Unboded Prestressed CFRP Plates (비부착 프리스트레스트 CFRP 판으로 보강된 콘크리트 거더의 비선형 해석)

  • Choi, Kyu-Chon;Lee, Jae Seok
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.6A
    • /
    • pp.495-502
    • /
    • 2010
  • A study for the nonlinear analysis method of flexural behavior of concrete girders strengthened with unbonded prestressed CFRP plates is presented. The concrete girders strengthened with unbonded prestressed CFRP plates exhibit more complex nonlinear behavior due to the slip between the concrete girder and the CFRP plates than the case of bonded CFRP plates. The unbonded CFRP plate is modeled as an assemblage of the curved elements both ends of which are rigidly linked to the nodes of fibered frame elements. The slip effect of the unbonded CFRP plate is taken into account using the force equilibrium relationship at each node. To evaluate the validity and the capability of the proposed analysis method, the ultimate analysis results of the concrete beams strengthened with unbonded prestressed CFRP plate are compared with the experimental results obtained from other investigators. The proposed analysis method is found to predict ultimate behaviors of these beams fairly well. Additionally the time-dependent deformations of the concrete beam seems to have little influence on the ultimate behaviors of concrete beams strengthened with unbonded prestressed CFRP plate, and the cracks of the concrete beam which occurred before strengthening it with CFRP plate are found to have almost no influence on the ultimate capacity of the beam.

Experimental Performance Evaluation of Steel Mesh as Maintenance and Reinforcement Materials (Steel Mesh Cement Mortar의 보수⋅보강 성능 평가)

  • Kim, Yeon-Sang;Choi, Seung-Jai;Kim, Jang-Ho Jay
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.18 no.4
    • /
    • pp.50-58
    • /
    • 2014
  • Due to the cost burden of new construction, the necessity of repair and retrofitting of aged structures is sharply increasing as the domain of repair and retrofitting construction is expanding. Because of the necessity, new technologies for repair and retrofitting are continuously studied in Korea and foreign countries. Steel adhesive method, fiber reinforced plastic (FRP) surface adhesive method, and external prestressing method are used to perform the repair and retrofitting works in Korea. In order to consider a repair method using steel mesh reinforced cement mortar (SMCM), 3-point flexural member test was conducted considering repair area and layer number of SMCM. Five types of specimens including ordinary reinforced concrete (RC) specimen with dimensions of $1400{\times}500{\times}200$ (mm) were cast for testing the deflection measurement, a LVDT was installed at the top center of the specimens. Also, a steel strain gauge and a concrete strain gauge were placed at the center of the specimens. A steel strain gauge was also installed on the shear reinforcement. The 3 point flexural member test results showed that the maximum load of SMCM reinforced specimen was higher than that of basic RC specimen in all of the load-displacement curves. Also, the results showed that, when the whole lower part of the basic RC specimen was reinforced, the maximum load and strain were 1.18 and 1.37 times higher than that of the basic RC specimen, respectively. Each specimen showed a slightly different failure behavior where the difference of the results was caused by the difference in the adhesive level between SMCM and RC. Particularly, in SM-B1 specimen, SMCM spalled off during the experiment. This failure behavior showed that the adhesive performance for RC must be improved in order to utilize SMCM as repair and retrofitting material.